https://doi.org/10.33380/2305-2066-2021-10-4(1)-95-103 УДК 54.061:54.062:615.32

Оригинальная статья / Research article

Сравнительный ГХ-МС анализ состава метаболитов надземной и подземной части сабельника болотного (Comarum palustre L.)

Й. Стругар, А. А.Орлова*, М. Н. Повыдыш

Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный химико-фармацевтический университет» Министерства здравоохранения Российской Федерации, 197376, г. Санкт-Петербург, ул. Профессора Попова, д. 14, лит. А

*Контактное лицо: Орлова Анастасия Андреевна. E-mail: anastasiya.lebedkova@spcpu.ru

ORCID: Й. Стругар – https://orcid.org/0000-0002-0816-2579; А. А. Орлова – https://orcid.org/0000-0002-7836-578; М. Н. Повыдыш – https://orcid.org/0000-0002-7768-905.

Статья поступила: 20.10.2021 Статья принята в печать: 23.11.2021 Статья опубликована: 27.12.2021

Резюме

Введение. Понимание механизмов накопления отдельных групп биологически активных веществ в перспективных видах сырья и возможности их прогнозирования важно для решения фундаментальных и прикладных задач фармацевтики. На сегодняшний день выявлены различия качественного и количественного состава вторичных метаболитов в надземной и подземной части сабельника болотного, однако остается не исследованным вопрос, касающийся природы проявления данных различий.

Цель. Сравнительное метаболомное изучение состава первичных метаболитов надземной и подземной части сабельника болотного.

Материалы и методы. В качестве объекта исследования использовали надземную и подземную часть сабельника болотного, заготовленные в окрестностях питомника лекарственных растений ФГБОУ ВО СПХФУ Минздрава России (Ленинградская область, Всеволожский район, Приозерское шоссе, 38 км) в 2019 году и высушенные воздушно-теневым методом. Метаболомные исследования проводили с использованием метода ГХ-МС. Статистическую обработку проводили на платформе MetaboAnalyst 5.0.

Результаты и обсуждение. При анализе хроматограмм, полученных с использованием метода ГХ-МС, выявлено содержание 933 первичных метаболита в надземной и подземной части сабельника болотного, 120 из которых были идентифицированы. С использованием ряда статистических методов выявлено 10 метаболитов из групп моносахаридов, органических кислот и спиртов, вносящих наибольший вклад в проявление различий между исследуемыми образцами.

Заключение. В ходе исследования выявлена взаимосвязь между составом первичных и вторичных метаболитов в лекарственном растительном сырье.

Ключевые слова: сабельник болотный, надземная часть, подземная часть, первичные метаболиты, метаболомный анализ

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи

Вклад авторов. М. Н. Повыдыш и А. А. Орлова придумали и разработали эксперимент. А. А. Орлова и Й. Струга провели экспериментальную работу и статистическую обработку результатов. А. А.Орлова, Й. Стругар, М. Н. Повыдыш участвовали в обсуждении результатов исследования, подготовке текста статьи.

Благодарность. Работа выполнена при методологической поддержке кафедры физиологии и биохимии растений Санкт-Петербургского государственного университета.

Финансирование. Результаты работы получены с использованием оборудования ЦКП «Аналитический центр ФГБОУ ВО СПХФУ Минздрава России» в рамках соглашения № 075-15-2021-685 от 26 июля 2021 года при финансовой поддержке Минобрнауки России. Работа выполнена при методологической поддержке кафедры физиологии и биохимии растений Санкт-Петербургского государственного университета.

Для цитирования: Стругар Й., Орлова А. А., Повыдыш М. Н. Сравнительный ГХ-МС анализ состава метаболитов надземной и подземной части сабельника болотного (*Comarum palustre* L.). *Разработка и регистрация лекарственных средств*. 2021;10(4–1):95–103. https://doi.org/10.33380/2305-2066-2021-10-4(1)-95-103

Comparative GC-MS Analysis of the Composition of Metabolites of Aboveground and Underground Parts of *Comarum palustre* L.

Jovana Strugar, Anastasia A. Orlova*, Maria N. Povydysh

Saint-Petersburg State Chemical-Pharmaceutical University, 14A, Prof. Popov str., Saint-Petersburg, 197376, Russia

*Corresponding author: Anastasia A. Orlova. E-mail: anastasiya.lebedkova@spcpu.ru

 $\textbf{ORCID:}\ Jovana\ Strugar-https://orcid.org/0000-0002-0816-2579; Anastasia\ A.\ Orlova-https://orcid.org/0000-0002-7836-578; Maria\ N.\ Povydysh-https://orcid.org/0000-0002-7768-905.$

Received: 20.10.2021 **Revised:** 23.11.2021 **Published:** 27.12.2021

Abstract

Introduction. Understanding the mechanisms of accumulation of individual groups of biologically active substances in promising types of plant raw materials and the possibility of predicting them is important for solving fundamental and applied problems of pharmaceuticals. To date, differences have been revealed in the qualitative and quantitative composition of secondary metabolites in the aboveground and underground of *Comarum palustre* L., however, the issue remains unstudied.

Aim. Comparative metabolomic study of the composition of the primary metabolites of the aboveground and underground parts of *Comarum palustre* L.

© Стругар Й., Орлова А. А., Повыдыш М. Н., 2021

© Strugar J., Orlova A. A., Povydysh M. N., 2021

Materials and methods. The object of the study was the aboveground and underground parts of *Comarum palustre* L., harvested in the vicinity of the nursery of medicinal plants of the St. Petersburg State Chemical and Pharmaceutical University (Leningrad Region, Vsevolozhsky District, Priozerskoe Highway, 38 km) in 2019 and dried. Metabolomic studies based on GC-MS method was perfomed. A statistical analysis based on the MetaboAnalyst 5.0 platform was used.

Results and discussion. Analysis of the chromatograms obtained using the GC-MS method revealed the content of 933 primary metabolites in the aboveground and underground parts of *Comarum palustre* L., 120 of which were identified. Using a number of statistical methods, 10 metabolites from monosaccharides, acids and alcohols, making the greatest contribution to the manifestation of differences between the studied samples, were identified.

Conclusion. The study revealed the relationship between the composition of primary and secondary metabolites in medicinal plant raw materials.

Keywords: Comarum palustre L., aerial part, underground part, primary metabolites, metabolomic analysis

Conflict of interest. The authors declare that they have no obvious and potential conflicts of interest related to the publication of this article.

Contribution of the authors. Maria N. Povydysh, Anastasia A. Orlova – conceptualization, methology. Anastasia A. Orlova, Jovana Strugar – experimental work and statistical processing of the results. Anastasia A. Orlova, Jovana Strugar, Maria N. Povydysh – discussion of research results, preparation of the text of the article.

Acknowledgment. This work was carried out with the methodological support of the Department of Plant Physiology and Biochemistry, St. Petersburg State University.

Funding. The results of the work were obtained using the equipment of the Center for Collective Use "Analytical Center of the Federal State Budgetary Educational Institution of Higher Education SPKhFU of the Ministry of Health of Russia" in the framework of agreement No. 075-15-2021-685 dated July 26, 2021 with the financial support of the Ministry of Education and Science of Russia. This work was carried out with the methodological support of the Department of Plant Physiology and Biochemistry, St. Petersburg State University.

For citation: Strugar J., Orlova A. A., Povydysh M. N. Comparative GC-MS analysis of the composition of metabolites of aboveground and underground parts of *Comarum palustre* L. *Razrabotka i registratsiya lekarstvennykh sredstv* = *Drug development & registration*. 2021;10(4–1):95–103. (In Russ.) https://doi.org/10.33380/2305-2066-2021-10-4(1)-95-103

ВВЕДЕНИЕ

Создание активных фармацевтических субстанций на основе индивидуальных низкомолекулярных веществ природного происхождения и лекарственных препаратов на их основе является актуальным направлением в силу их широкого фармакологического потенциала, сравнительно более высокой безопасности и низкой токсичности [1, 2]. Именно поэтому важной задачей является всестороннее изучение метаболитного состава растительных объектов, разработка подходов к выделению индивидуальных компонентов и оценка их фармакологического потенциала [3].

Сабельник болотный (Comarum palustre L.) - травянистое растение из семейства розовых (Rosaceae), произрастающее в северном полушарии [4]. Вид находит широкое применение в традиционной медицине в качестве противовоспалительного, вяжущего, противовирусного анальгезирующего [5], а также показывает впечатляющие данные на экспериментальных моделях гипогликемического, нефропротекторного, противовирусного, антиоксидантного и других фармакологических эффектов [6–8]. Кроме того, проведены многочисленные исследования состава биологически активных соединений. На сегодняшний день в литературе описано порядка 70 компонентов из групп полифенолов, тритерпеноидов, стероидов, полисахаридов и других, а также показаны значимые различия в качественном и количественном составе метаболитов при сравнении надземной и подземной части сабельника болотного.

Понимание механизмов накопления отдельных групп биологически активных веществ в перспективных видах сырья и возможности их прогнозирова-

ния важно для решения фундаментальных и прикладных задач фармацевтики [9]. Для решения данных вопросов удобным инструментом являются метаболомные подходы. Использование различных протоколов исследования позволяет оценить состав первичных метаболитов и спрогнозировать основные биосинтетическое пути в клетках, а также оценить зависимость накопления биологически активных веществ (БАВ) от влияния внешних и внутренних факторов, изыскать пути управления накоплением целевых групп БАВ и оценить целесообразность работы с тем или иным видом растительного материала [10].

Именно поэтому **целью данного исследования** являлось сравнительное метаболомное изучение состава первичных метаболитов надземной и подземной части сабельника болотного.

МАТЕРИАЛЫ И МЕТОДЫ

В качестве объекта исследования использовали надземную и подземную части сабельника болотного, заготовленные в окрестностях питомника лекарственных растений ФГБОУ ВО СПХФУ Минздрава России (Ленинградская область, Всеволожский район, Приозерское шоссе, 38 км) в 2019 году и высушенные воздушно-теневым методом.

Растительный материал экстрагировали водным раствором метанола. Полученные извлечения были последовательно дериватизированы О-метилгидро-ксиламин гидрохлоридом и N-метил-N-(триметилсилил)-трифторацетамидом [11]. Анализ проводили методом газовой хроматографии – масс-спектрометрии (ГХ-МС) на газовом хроматомасс-спектрометре GCMS-QP2010 (SHIMADZU) с квадрупольным анализатором,

с использованием ионизации методом электронного удара и 5%-фенил-95%-диметилсилоксановой колонки (DB-5 MS UI, J&W Fisher, Германия). Экстракция и аннотация пиков проводилась с использованием программного обеспечения AMDIS, Xcalibur 3.0 и MSDIAL, идентификация соединений основывалась на индексах времен удерживания и схожести спектров ионизации в потоке электронов (NIST14 и собственные спектральные библиотеки). Количественный анализ основывался на интеграции соответствующих масс-хроматограмм (extracted ion chromatograms, XICs, \pm 0.5 Da) при соответствующих временах удерживания (Rt).

Статистическая обработка полученных данных проводилась в программном обеспечении Metabo-Analyst 5.0 с использованием одномерных и многомерных методов.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

В данном исследовании была проведена оценка метаболических профилей надземной и подземной части сабельника болотного. В ходе анализа полученных хроматограмм было выявлено 933 первичных метаболита, 120 из которых удалось идентифицировать с использованием коммерческих и собственных библиотек. Полная информация об идентифицированных метаболитах представлены в таблице 1.

Таблица 1. Первичные метаболиты, идентифицированные в ходе сравнительного метаболомного исследования надземной и подземной частей сабельника болотного

Table 1. Primary metabolites identified in the comparative metabolomic study of the aboveground and underground parts of *C. palustre*

Название метаболита Metabolite name	Время удерживания, Rt, мин Retention time Rt, min	Индекс удерживания, RI Retention index RI
Карбоновые кислоты Carboxylic acids		
Пироглутаминовая кислота Pyroglutamic acid	13.156	1167.3
Эритроновая кислота Erythronic acid	19.747	1531.8
Пальмитиновая кислота Palmitic acid	28.817	2048.9
Галактаровая кислота Galactaric acid	28.935	2056.5
Кофейная кислота Caffeic acid	30.386	2152.5
М алоновая кислота Malonic acid	13.615	1201.2
Никотиновая кислота Nicotinic acid	14.819	1300.3

лита me	ия, Rt, .; min	ния, RI x RI
Название метаболита Metabolite name	Время удерживания, Rt мин Retention time Rt, min	Индекс удерживания, Retention index RI
М алеиновая кислота Maleic acid	15.162	1315.9
Янтарная кислота Succinic acid	15.210	1318.0
Метил-янтарная кислота Methyl succinic acid	15.381	1325.7
Глицериновая кислота Glyceric acid	15.845	1353.1
Фумаровая кислота Fumaric acid	16.041	1353.6
Пеларгоновая кислота Pelargonic acid	16.290	1366.6
Глутаровая кислота Glutaric acid	16.733	1386.6
Мезаконовая кислота Mesaconic acid	18.427	1466.8
Цитрамаловая кислота Citramalic acid	18.859	1487.5
Яблочная кислота Malic acid	19.211	1504.6
L-аспарагиновая кислота L-aspartic acid	19.330	1510.6
Ацетилсалициловая кислота Acetylsalicylic acid	19.531	1520.9
4-аминобутировая кислота 4-aminobutyric acid	19.930	1541.1
Гамма-аминомасляная кислота Gamma-aminobutyric acid	19.956	1542.4
6-гидрокси-никотиновая кислота 6-hydroxy-nicotinic acid	20.222	1556.9
Треоновая кислота Threonic acid	20.450	1567.5
3-гидрокси-бензоат 3-hydroxy benzoate	20.592	1574.7
3-изопропил-малоновая кислота 3-isopropyl malonic acid	20.969	1593.6
3-гидрокси-3-метил-глутарат 3-hydroxy-3-methyl-glutarate	21.424	1617.9
Винная кислота Tartaric acid	21.535	1623.8
4-гидроксибензойная кислота 4-hydroxybenzoic acid	21.609	1627.8
Пипеколиновая кислота Pipecolic acid	21.882	1642.4
β-кетоадипиновая кислота β-ketoadipic acid	22.060	1651.9
Лауриновая кислота Lauric acid	22.148	1656.6
Ксилоновая кислота Xylonic acid	23.614	1736.7

Название метаболита Metabolite name	Время удерживания, Rt, мин Retention time Rt, min	Индекс удерживания, RI Retention index RI
1,3-бензендикарбоновая кислота 1,3-benzenedicarboxylic acid	24.157	1767.6
Ванилиновая кислота Vanillic acid	24.307	1775.7
Шикимовая кислота Shikimic acid	25.307	1833.38
3,4-дигидроксибензоат 3,4-hydroxybenzoate	25.364	1836.7
Лимонная и изолимонная кислоты Citric and Isocitric acids	25.537	1846.9
Лимонная кислота Citric acid	20.56	1848.2
Миристиновая кислота Myristic acid	25.627	1852.2
N-карбамил-глутамат N-carbamyl glutamate	26.278	1890.5
Хинная кислота Quinic acid	26.362	1895.4
п-кумаровая кислота p-coumaric acid	27.248	1950.3
Галловая кислота Gallic acid	27.768	1982.0
Галактуроновая кислота Galacturonic acid	27.813	1984.7
Изогексоновая кислота Isohexonic acid	28.169	2007.0
Глюконовая кислота Gluconic acid	28.753	2044.7
Сахарная кислота Saccharic acid	28.989	2059.9
Феруловая кислота Ferulic acid	29.672	2104.2
Гептадекановая кислота Heptadecanoic acid	30.341	2149.4
Стеариновая кислота Stearic acid	31.506	2229.1
Синапиновая кислота Sinapic acid	31.924	2258.3
Изохлорогеновая кислота Isochlorogenic acid	41.766	2978.7
Хлорогеновая кислота Chlorogenic acid	43.054	3079.2
Моносаха Monosacch		
Арабиноза Arabinose	22.537	1677.4
Фукоза Fucose	23.822	1748.5

Название метаболита Metabolite name	Время удерживания, Rt, мин Retention time Rt, min	Индекс удерживания, RI Retention index RI
Глюкоза Glucose	27.086	1939.9
Изомальтоза Isomaltose	39.48	2850.5
D-(-)-рибоза D-(-)-ribose	21.986	1647.9
Ксилоза Xylose	22.544	1677.7
Ликсоза Lyxose	22.726	1687.5
Рибоза Ribose	22.812	1692.1
Рамноза Rhamnose	23.842	1749.6
2-дезокси-D-глюкоза 2-deoxy-D-glucose	24.281	1774.2
β-D-(+)-глюкоза 2-deoxy-D-glucose	26.136	1882.2
Аллоза Allose	27.100	1940.7
Фруктоза-6-фосфат Fructose-6-phosphate	33.596	2378.5
D-(+)-мальтоза D-(+)-maltose	36.092	2568.6
D-(+)-трегалоза D-(+)-trehalose	36.374	2590.9
β-лактоза β-lactose	37.127	2651.8
α-лактоза α-lactose	37.158	2654.3
Мелибиоза Melibiose	38.358	2754.1
Мальтотриоза Maltotriose	54.592	3333.8
D-(+)-мелецитоза D-(+)-melecytosis	46.816	3453.4
Рафиноза Raffinose	47.267	3495.1
D-паноза D-panosa	48.846	3620.8
Спирты Alcohols		
Мио-инозитол Myo-inositol	29.119	2086.3
Этаноламин Ethanolamine	14.293	1255.8
Глицерол Glycerol	14.298	1256.3

Название метаболита Metabolite name	Время удерживания, Rt. мин Retention time Rt, min	Индекс удерживания, RI Retention index RI
R-(-)-1-амино-2-пропанол R-(-)-1-amino-2-propanol	15.194	1317.3
Мезоэритритол Mesoerythritol	19.724	1530.6
L-(-)-арабитол L-(-)-arabitol	21.801	1638.1
Рибитол, 1 TMS Ribitol, 1 TMS	23.120	1708.9
Ксилитол Xylitol	23.466	1728.5
Рибитол, 5 TMS Ribitol, 5 TMS	24.006	1758.8
1,2-ангидро-мио-инозитол 1,2-anhydro-myo-inositol	25.889	1867.6
L-идитол L-iditol	26.263	1889.5
Маннитол Mannitol	27.596	1971.4
Сорбитол Sorbitol	27.762	1981.1
Кондуритол-β-экспоксид Conduritol-β-expoxide	27.972	1994.6
Фитол Phytol	30.867	2184.9
Глицерол-3-галактозид Glycerol-3-galactoside	32.199	2277.5
Гликозид салицилового спирта Salicylic alcohol glycoside	36.051	2565.4
Мальтитол Maltitol	39.182	2824.5
Аминокисл Amino ac		
L-серин L-serine	14.200	1247.8
Изолейцин Isoleucine	14.941	1305.9
Треонин, 2TMS Threonine, 2TMS	14.984	1307.8
Урацил Uracil	15.989	1353.1
β-цианоаланин β-cyanoalanine	16.662	1383.4
Треонин, 3 TMS Threonine, 3 TMS	17.073	1402.1
β-аланин β-alanine	17.822	1437.9
Оксопролин β-alanine	19.763	1532.6

	ı		
Название метаболита Metabolite name	Время удерживания, Rt, мин Retention time Rt, min	Индекс удерживания, RI Retention index RI	
Аденин Adenine	26.084	1879.1	
Тирозин Adenine	27.420	1960.5	
L-триптофан L-tryptophan	31.445	2224.8	
Аденозин Adenosine	37.371	2671.6	
Изопентиладенозин Isopentyladenosine	41.330	2958.7	
Жирные кис. Fatty acid			
Линолевая кислота Linoleic acid	31.336	2217.2	
Олеиновая кислота Oleic acid	31.412	2222.5	
Линоленовая кислота Linolenic acid	31.431	2223.9	
Арахиновая кислота Arachidic acid	34.507	2441.5	
Углеводороды Hydrocarbons			
Тридекан Tridekan	19.956	1542.4	
3-этил-2,6,10-триметил-ундекан 3-ethyl-2,6,10-trimethyl-undecane	20.687	1579.1	
Пентадекан Pentadecane	23.298	1718.9	
Аминосахара Amino sugar			
D-(+)-галактозамин D-(+)-galactosamine	26.684	1915.1	
Уридин-5'-дифосфо-N-ацетил- глюкозамин Uridine-5'-diphospho-N-acetyl- glucosamine	24.996	1815.4	
N-ацетил-D-глюкозамин N-acetyl-D-glucosamine	28.962	2058.2	
Хиноны Quinones			
Гидрохинон Hydroquinone	17.260	1410.9	
Альдегид Aldehyde			
п-гидроксибензальдегид p-hydroxybenzaldehyde	19.061	1497.2	
Катехины Catechins			
Эпикатехин Epicatechin	40.083	2901.5	

Для получения достоверной и полной оценки различий метаболических профилей объектов исследования данные обрабатывали с использованием ряда статистических методов. Нормализованные данные относительных содержаний хроматографических сигналов были импортированы в программное обеспечение MetaboAnalyst 5.0.

С использованием методов кластерного анализа показано образование четко обособленных кластеров между образцами надземной и подземной части, а также наличие корреляции между всеми анализируемыми образцами в каждой из групп (рисунок 1).

Для выявления различий в клеточном метаболизме надземной и подземной части сабельника болотного мы сосредоточились на сравнительном анализе 120 идентифицированных метаболитов. Кластерный анализ по идентифицированным соединениям показал схожие результаты с анализом по всем выявленным компонентам (рисунок 2).

Средние уровни 120 метаболитов в исследуемых образцах были соответственно рассчитаны и сопоставлены. Значения этих метаболитов были выра-

жены с использованием критерия Стьюдента (значение менее 0,05 считалось значимым), исходя из чего выявлено, что 111 из рассматриваемых метаболитов имеют значимые количественные различия, из них количество 87 метаболитов в подземной части сабельника болотного снижается в сравнении с подземной части, а 26 – увеличивается (рисунок 3).

Кроме того, был выполнен анализ главной компоненты для разработки визуального графика оценки сходства и различия метаболических профилей. Так, РСА показал расхождение обособленных кластеров образцов надземной и подземной части сабельника болотного в двух основных компонентах РС1 и РС2, на которых приходится 51.1 и 20.8 % дисперсии данных, соответственно, что позволяет сделать заключение о значимых различиях их метаболических профилей (рисунок 4, A). Чтобы сделать это различие более очевидным, был выполнен контролируемый анализ PLS-DA с масштабированным по Парето набором данных и преобразованием мощности с использованием первых двух скрытых переменных. На данной модели получены аналогичные с РСА резуль-

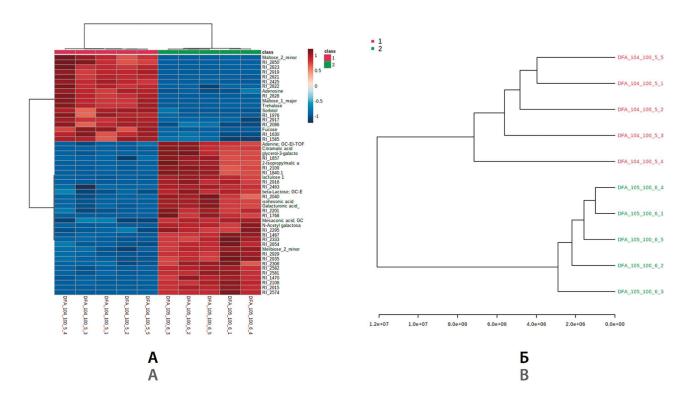


Рисунок 1. Иерархический кластерный анализ образцов:

А – тепловая карта ТОР50 метаболитов; Б – дендрограмма. Интенсивность цвета отражает нормализованные значения относительного содержания компонента в исследуемом образце; красный цвет представляет повышение относительного содержания, синий – понижение; группа 1 – образцы подземной части сабельника болотного; группа 2 – образцы надземной части сабельника болотного

Figure 1. Hierarchical cluster analysis of samples:

A. heat map of TOP50 metabolites; B – dendrogram. The intensity of the color reflects the normalized values of the relative content of the component in the test sample; red – up-regulated compounds, blue – down-regulated; group 1 – samples of the underground part of *C. palustre*; group 2 – samples of the aboveground part of *C. palustre*

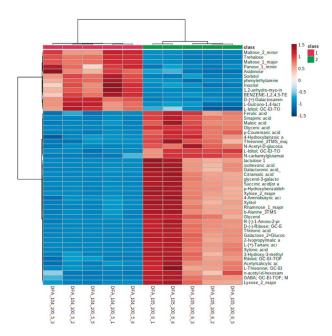


Рисунок 2. Иерархический кластерный анализ (тепловая карта) образцов на основании ТОР50 идентифицированных метаболитов. Интенсивность цвета отражает нормализованные значения относительного содержания компонента в исследуемом образце; красный цвет представляет повышение относительного содержания, синий – понижение; группа 1 – образцы подземной части сабельника болотного; группа 2 – образцы надземной части сабельника болотного

Figure 2. Hierarchical cluster analysis (heat map) of samples based on TOP50 identified metabolites. The intensity of the color reflects the normalized values of the relative content of the component in the test sample; red – up-regulated compounds, blue – down-regulated; group 1 – samples of the underground part of *C. palustre*; group 2 – samples of the aboveground part of *C. palustre*

Рисунок 4. Графики оценки РСА (A) и PLS-DA (Б)

Figure 4. PCA (A) и PLS-DA (B) score plots

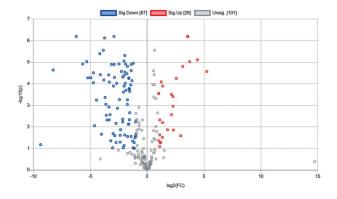
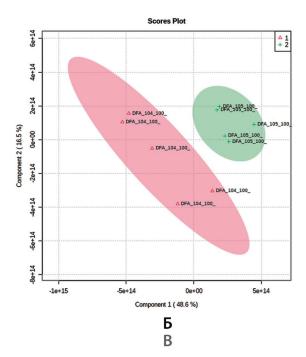



Рисунок 3. График вулкана комбинированного анализа кратных изменений и критерия Стьюдента. Пороговая кратность изменчивости равна 2.0, пороговое значение р равно 0.05. Направление сравнения 1-2. Синим обозначаются соединения, количество которых снижается в первой группе по отношению ко второй, красным – увеличивается

Figure 3. Volcano plot. The threshold multiplicity of variability is 2.0, the threshold p value is 0.05. Comparison direction 1-2. Red – up-regulated compounds, blue – down-regulated

таты (рисунок 4, Б). В соответствии с графиками нагрузки PLS-DA (рисунки 5, 6) было выявлено 10 маркерных метаболитов (при VIP > 1), наиболее значимых для кластеризации групп в модели PLS-DA, среди них сигналы трех карбоновых кислот – кофейной, эритроновой и галактаровой, шестиатомного спирта циклогексана – мио-инозитола, и шести моносахаридов – арабинозы, изомальтозы, эрлозы, фукозы, лейкрозы и глюкозы.

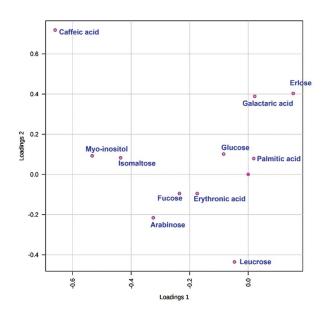


Рисунок 5. График нагрузки PLS-DA с указанием метаболитов, вносящих наибольший вклад в кластеризацию исследуемых образцов, соответствующие графикам оценки (рисунок 4, Б)

Figure 5. PLS-DA loading plot showing metabolites that make the greatest contribution to the clustering of the studied samples, corresponding to the assessment graphs (Figure 4, B)

Увеличение количества маркерных первичных метаболитов в клетках надземной части сабельника болотного сигнализирует об интенсификации синтеза вторичных метаболитов по фенилпропаноидному и шикиматному путям, что закономерно приводит к

повышению содержания вторичных метаболитов полифенольной природы, таких как флавоноидов, танинов и фенолкарбоновых кислот. Исходя из чего, именно надземная часть сабельника болотного может являться более перспективным источником очищенных сумм полифенольных соединений и индивидуальных низкомолекулярных метаболитов данной группы для разработки на их основе активных фармацевтических субстанций, биологически активных добавок и продуктов функционального питания или лекарственных средств.

ЗАКЛЮЧЕНИЕ

Таким образом, в ходе исследования были выявлены маркерные метаболиты вносящие наибольший вклад в различия в качественном и количественном составе вторичных метаболитов в надземной и подземной части сабельника болотного. Показано, что метаболомный подход является мощным инструментом выявления механизмов накопления БАВ в растительных клетках и анализа целесообразности использования конкретного вида растительного материала в качестве источника целевых метаболитов.

ЛИТЕРАТУРА

- Karimi A., Maedeh M., Rafieian-Kopaei M. Herbal versus synthetic drugs; beliefs and facts. *Journal of nephropharmacology*. 2015;4(1):27–30.
- 2. Лужанин В. Г., Уэйли А. К., Понкратова А. О., Гришукова Е. А., Сулоев И. С., Смирнов С. Н., Серебряков Е. Б. Выделение индивидуальных соединений из надземной части стальника полевого (Ononis arvensis L.) и золотарника канадского (Solidago

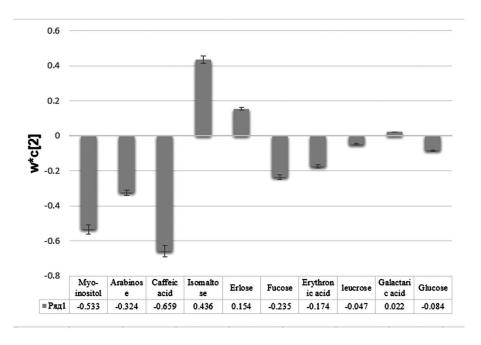


Рисунок 6. График нагрузки модели PLS-DA (рисунок 5), наблюдаемый для PC 2 (w*c [2]). Каждый столбец представляет собой выявленный метаболит со стандартными ошибками, отображаемыми на панели ошибок

Figure 6. Loading column plot of the PLS-DA model (figure 5), observed by PC 2 (w*c [2]). Each column represents an identified metabolite with standard errors displayed in the error bar

- canadensis L.). Разработка и регистрация лекарственных средств. 2021;10(1):83–89. DOI: 10.33380/2305-2066-2021-10-1-83-89.
- Moilanen J., Sinkkonen J., Salminen J. P. Characterization of bioactive plant ellagitannins by chromatographic, spectroscopic and mass spectrometric methods. *Chemoecology*. 2013;23:165–179. DOI: 10.1007/s00049-013-0132-3.
- 4. Ajebli M., Eddouks M. The promising role of plant tannins as bioactive antidiabetic agents. *Current Medical Chemistry*. 2019;26(25):4852–4884. DOI: 10.2174/0929867325666180605124256.
- Sergun V., Burkova V., Poznyakovsky V., Tokhiriyon B. Siberian plants and natural mineral salts for dietary supplements. *Inter*netional Journal of Pharmaceutical Research and Allied Sciences. 2021;10(2):108–115. DOI: 10.51847/ChW0Q2S4ev.
- Kashchenko N. I., Chirikova N. K., Olennikov D. N. Agrimoniin, an active ellagitannin from Comarum palustre herb with antiα-glucosidase and antidiabetic potential in streptozotocininduced diabetic rats. Molecules. 2017;22(1):1–16. DOI: 10.3390/ molecules22010073.
- Hellén H., Schallhart S., Praplan A. P., Tykkä T., Aurela M., Lohila A., Hakola H. Sesquiterpenes dominate monoterpenes in northern wetland emissions. *Atmospheric Chemistry and Physics*. 2020;20(11):7021–7034. DOI: 10.5194/acp-20-7021-2020.
- 8. Орлова А. А., Стругар Й., Штарк О. Ю., Жуков В. А., Лужанин В. Г., Повыдыш М. Н. Использование подходов метаболомики в анализе лекарственных растений и фитопрепаратов (обзор). Разработка и регистрация лекарственных средств. 2021;10(1):97–105. DOI:10.33380/2305-2066-2021-10-1-97-105.
- Strižincová P., Ház A., Burčová Z., Feranc J., Kreps F., Ńurina I., Jablonský M. Spruce bark—a source of polyphenolic compounds: Optimizing the operating conditions of supercritical carbon dioxide extraction. *Molecules*. 2019; 24(22):1–15. DOI: 10.3390/ molecules24224049.
- Milkovska-Stamenova S., Schmidt R., Frolov A., Birkemeyer C. GC-MS method for the quantitation of carbohydrate intermediates in glycation systems. *Journal of Agricultural and Food Chemistry*. 2015;63:5911–5919. DOI: 10.1021/jf505757m.
- Rosli M. A. F., Mediani A., Azizan K. A., Baharum S. N., Goh H.-H. UPLC-TOF-MS/MS-Based metabolomics analysis reveals speciesspecific metabolite compositions in pitchers of Nepenthes ampullaria, Nepenthes rafflesiana and their hybrid Nepenthes× hookeriana. Frontiers in Plant Science. 2021;12:655004. DOI: 10.3389/ fpls.2021.655004.

REFERENCES

- Karimi A., Maedeh M., Rafieian-Kopaei M. Herbal versus synthetic drugs; beliefs and facts. *Journal of nephropharmacology*. 2015;4(1):27–30.
- Luzhanin V. G., Whaley A. K., Ponkratova A. O., Grishukova E. A., Suloev I. S., Smirnov S. N., Serebryakov E. B. Isolation of Individual Compounds from the Terrestrial Parts of *Ononis Arvensis* L. and Solidago Canadensis L. Razrabotka I registratsiya lekarstvennykh sredstv = Drug development & registration. 2021;10(1):83–89. (In Russ.) DOI: 10.33380/2305-2066-2021-10-1-83-89.
- Moilanen J., Sinkkonen J., Salminen J. P. Characterization of bioactive plant ellagitannins by chromatographic, spectroscopic and mass spectrometric methods. *Chemoecology*. 2013;23:165–179. DOI: 10.1007/s00049-013-0132-3.
- Ajebli M., Eddouks M. The promising role of plant tannins as bioactive antidiabetic agents. *Current Medical Chemistry*. 2019;26(25):4852–4884. DOI: 10.2174/0929867325666180605124256.
- Sergun V., Burkova V., Poznyakovsky V., Tokhiriyon B. Siberian plants and natural mineral salts for dietary supplements. *Inter*netional Journal of Pharmaceutical Research and Allied Sciences. 2021;10(2):108–115. DOI: 10.51847/ChW0Q2S4ev.
- Kashchenko N. I., Chirikova N. K., Olennikov D. N. Agrimoniin, an active ellagitannin from Comarum palustre herb with antiα-glucosidase and antidiabetic potential in streptozotocininduced diabetic rats. Molecules. 2017;22(1):1–16. DOI: 10.3390/ molecules22010073.

- Hellén H., Schallhart S., Praplan A. P., Tykkä T., Aurela M., Lohila A., Hakola H. Sesquiterpenes dominate monoterpenes in northern wetland emissions. *Atmospheric Chemistry and Physics*. 2020;20(11):7021–7034. DOI: 10.5194/acp-20-7021-2020.
- Orlova A. A., Strugar J., Shtark O. Yu., Zhukov V. A., Luzhanin V. G., Povydysh M. N. Use of Metabolomic Approaches in Analysis of Medicinal Plants and Phytopreparations (Review). Razrabotka I registratsiya lekarstvennykh sredstv = Drug development & registration. 2021;10(1):97–105. (In Russ.) DOI: 10.33380/2305-2066-2021-10-1-97-105.
- Strižincová P., Ház A., Burčová Z., Feranc J., Kreps F., Ńurina I., Jablonský M. Spruce bark—a source of polyphenolic compounds: Optimizing the operating conditions of supercritical carbon dioxide extraction. *Molecules*. 2019; 24(22):1–15. DOI: 10.3390/ molecules24224049.
- Milkovska-Stamenova S., Schmidt R., Frolov A., Birkemeyer C. GC-MS method for the quantitation of carbohydrate intermediates in glycation systems. *Journal of Agricultural and Food Chemistry*. 2015;63:5911–5919. DOI: 10.1021/jf505757m.
- 11. Rosli M. A. F., Mediani A., Azizan K. A., Baharum S. N., Goh H.-H. UPLC-TOF-MS/MS-Based metabolomics analysis reveals species-specific metabolite compositions in pitchers of *Nepenthes ampullaria*, *Nepenthes rafflesiana* and their hybrid *Nepenthes× hookeriana*. Frontiers in Plant Science. 2021;12:655004. DOI: 10.3389/fpls.2021.655004.