https://doi.org/10.33380/2305-2066-2022-11-4(1)-31-37 УДК 615.322:579.695:631.879.32

Оригинальная статья / Research article

Фитостимулирующее действие продукта биодеструкции парацетамола на календулу лекарственную

E. В. Вихарева¹, И. И. Мишенина¹, Е. Д. Гапечкина¹, А. А. Селянинов², М. И. Рычкова³

- ¹ ФГБОУ ВО «Пермская государственная фармацевтическая академия» Министерства здравоохранения Российской Федерации (ФГБОУ ВО ПГФА Минздрава России), 614990, Россия, г. Пермь, ул. Полевая, д. 2
- ² ФГАОУ ВО «Пермский национальный исследовательский политехнический университет» (ПНИПУ), 614990, г. Пермь, Комсомольский проспект, д. 29 ³ ФГБУН «Пермский федеральный исследовательский центр Уральского отделения Российской академии наук» (ПФИЦ УрО РАН), 614990, г. Пермь, ул. Ленина, зд.13А
- ── Контактное лицо: Вихарева Елена Владимировна. E-mail: ajm@perm.ru

ORCID: E. В. Вихарева – https://orcid.org/0000-0002-7202-0073; И. И. Мишенина – https://orcid.org/0000-0002-6496-7427; Е. Д. Гапечкина – https://orcid.org/0000-0002-4626-3143;

А. А. Селянинов – https://orcid.org/0000-0001-8773-6894; М. И. Рычкова – https://orcid.org/0000-0002-6598-5870.

Статья поступила: 14.10.2022

Статья принята в печать: 17.11.2022

Статья опубликована: 27.12.2022

Резюме

Введение. В последние годы наблюдается нарастание фундаментального интереса к поиску эффективных, в том числе микробиологических, способов переработки фармацевтических отходов для получения на их основе новых биологически активных соединений. Полученные нами результаты показали, что продукт бактериальной деструкции парацетамола (ПБП) проявляет выраженные стимулирующие свойства в отношении лекарственных растений семейств Plantaginaceae, Lamiaceae, Urticaceae, Linaceae и может использоваться как индуктор накопления в них биологически активных веществ.

Цель. Цель настоящей работы – исследование влияния ПБП на динамику накопления биомассы и содержание флавоноидов в цветках календулы лекарственной (Calendula officinalis L.), сем. Астровые (Asteraceae) в сравнении с контролем (водой) и стимулятором роста «Циркон».

Материалы и методы. В работе использовали ПБП, полученный на базе лаборатории алканотрофных микроорганизмов ПФИЦ УрО РАН (Пермь). Цветки календулы лекарственной, собранные с растений, обработанных ПБП и стимулятором роста «Циркон», использовали для исследования динамики накопления сухой биомассы и изменения содержания флавоноидов спектрофотометрическим методом. Для сравнительного анализа интенсивности прироста биомассы цветков при обработке растений данными агентами, а также для прогноза накопления флавоноидов применили кинетическое моделирование.

Результаты и обсуждение. Общий сбор биомассы цветков календулы лекарственной при обработке растений ПБП увеличился на 55 %, а при обработке стимулятором роста «Циркон» – на 24 % по сравнению с контролем. Содержание флавоноидов в цветках при обработке данными агентами увеличилось на 101 и 40 % соответственно. Определены сроки начала сбора цветков календулы лекарственной в условиях Западного Урала: при использовании стимулятора роста «Циркон» – с 20 июля, ПБП – с 1 августа, без обработки стимуляторами роста – с 14 августа. Оба стимулятора увеличивают дату окончания сбора сырья на 10 суток.

Заключение. Продукт бактериальной деструкции парацетамола оказывает выраженное стимулирующее действие на календулу лекарственную (Calendula officinalis L.), существенно увеличивая биомассу цветков и содержание в них флавоноидов по сравнению с контролем (водой) и стимулятором роста «Циркон». С применением кинетического моделирования установлены значения параметров скорости роста биомассы растительного сырья при обработке растений данными агентами, осуществлен прогноз накопления флавоноидов и обоснованы сроки сбора цветков календулы лекарственной в условиях Западного Урала.

Ключевые слова: продукт биодеструкции парацетамола, фитостимуляция, календула лекарственная (Calendula officinalis L.), флавоноиды, кинетическое моделирование

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей

Вклад авторов. Е. В. Вихарева – планирование эксперимента, написание статьи. И. И. Мишенина, Е. Д. Гапечкина – проведение полевого эксперимента, обработка результатов, А. А. Селянинов – кинетическое моделирование, И. И. Рычкова – получение продукта биодеструкции парацетамола

Финансирование. Исследование проведено при финансовой поддержке Пермского научно-образовательного центра «Рациональное недропользование», 2022 год.

Для цитирования: Вихарева Е. В., Мишенина И. И., Гапечкина Е. Д., Селянинов А. А., Рычкова М. И. Фитостимулирующее действие продукта биодеструкции парацетамола на календулу лекарственную. Разработка и регистрация лекарственных средств. 2022;11(4-1):31-37. https:// doi.org/10.33380/2305-2066-2022-11-4(1)-31-37

Phyto-stimulating Effect of Paracetamol Biodestruction Product on Calendula Officinalis

Elena V. Vihareva^{1⊠}, Irina I. Mishenina¹, Elizaveta D. Gapechkina¹, Alexander A. Selyaninov², Marina I. Rychkova³

- 1 Federal State Budgetary Educational Institution of Higher Education "Perm State Pharmaceutical Academy" of the Ministry of Health of the Russian Federation, 2, Polevaya str., Perm, 614990,
- Perm National Research Polytechnic University, 29, Komsomolsky av., Perm, 614990, Russia
- ³ Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 13A, Lenina str., Perm, 614990, Russia
- Corresponding author: Elena V. Vihareva, E-mail: aim@perm.ru
- © Вихарева Е. В., Мишенина И. И., Гапечкина Е. Д., Селянинов А. А., Рычкова М. И., 2022
- © Vihareva E. V., Mishenina I. I., Gapechkina E. D., Selyaninov A. A., Rychkova M. I., 2022

ORCID: Elena V. Vihareva – https://orcid.org/0000-0002-7202-0073; Irina I. Mishenina – https://orcid.org/0000-0002-6496-7427;

Elizaveta D. Gapechkina – https://orcid.org/0000-0002-4626-3143; Alexander A. Selyaninov – https://orcid.org/0000-0001-8773-6894;

Marina I. Rychkova – https://orcid.org/0000-0002-6598-5870.

Received: 14.10.2022 **Revised:** 17.11.2022 **Published:** 27.12.2022

Abstract

Introduction. In recent years, there has been an increase in fundamental interest in the search for effective, including microbiological, methods for processing pharmaceutical waste to obtain new biologically active compounds on their basis. Our results showed that the product of bacterial degradation of paracetamol (BDP) exhibits pronounced stimulating properties in relation to medicinal plants of the families *Plantaginaceae*, *Lamiaceae*, *Urticaceae*, *Linaceae* and can be used as an inducer of the accumulation of biologically active substances in them.

Aim. The purpose of this work is to study the effect of BDP on the dynamics of biomass accumulation and the content of flavonoids in the flowers of *Calendula officinalis* L., fam. Asteraceae in comparison with the control (water) and growth stimulator "Zircon".

Materials and methods. BDP obtained on the basis of the Laboratory of Alkanotrophic Microorganisms Institute of Ecology and Genetics of Microorganism UB RAS (Perm). Calendula officinalis flowers collected from plants treated with BDP and Zircon growth stimulator were used to study the dynamics of dry biomass accumulation and changes in the content of flavonoids by the spectrophotometric method. For a comparative analysis of the intensity of the increase in the biomass of flowers during the treatment of plants with these agents, as well as to predict the accumulation of flavonoids, kinetic modeling was used.

Results and discussion. The total biomass harvest of calendula officinalis flowers when treated with BDP increased by 55 %, and when treated with the Zircon growth stimulator, by 24 % compared to the control. The content of flavonoids in flowers when treated with these agents increased by 101 and 40 %, respectively. The dates for the beginning of the collection of calendula officinalis flowers in the conditions of the Western Urals were determined: with the use of the Zircon growth stimulator – from July 20, BDP – from August 1, without treatment with growth stimulants – from August 14. Both stimulants increase the end date of the collection of raw materials by 10 days.

Conclusion. The product of bacterial degradation of paracetamol has a pronounced stimulating effect on calendula officinalis, significantly increasing the biomass of flowers and the content of flavonoids in them compared to the control (water) and growth stimulator "Zircon". With the use of kinetic modeling, the values of the parameters of the growth rate of the biomass of plant raw materials during the treatment of plants with these agents were established, a forecast was made for the accumulation of flavonoids, and the timing of the collection of calendula officinalis flowers in the conditions of the Western Urals was substantiated.

Keywords: biodegradation product of paracetamol, phytostimulation, calendula officinalis, flavonoids, kinetic modeling

Conflict of interest. The authors declare that they have no obvious and potential conflicts of interest related to the publication of this article.

Contribution of the authors. Elena V. Vihareva – planning an experiment, writing an article. Irina I. Mishenina, Elizaveta D. Gapechkina – conducting a field experiment, processing the results. Alexander A. Selyaninov – kinetic modeling. Marina I. Rychkova – obtaining a biodegradation product of paracetamol.

Funding. The study was carried out with the financial support of the Perm Scientific and Educational Center "Rational Subsoil Use", 2022.

For citation: Vihareva E. V., Mishenina I. I., Gapechkina E. D., Selyaninov A. A., Rychkova M. I. Phyto-stimulating effect of paracetamol biodestruction product on calendula officinalis. *Drug development & registration*. 2022;11(4–1):31–37. (In Russ.) https://doi.org/10.33380/2305-2066-2022-11-4(1)-31-37

ВВЕДЕНИЕ

Поиск эффективных, в том числе микробиологических, способов переработки фармацевтических отходов для получения на их основе новых полезных продуктов особенно актуален в настоящее время в связи проблемой глобального загрязнения окружающей среды лекарственными средствами и их метаболитами. Фармацевтические поллютанты, признанные новым классом ксенобиотиков, обнаруживаются в почве, донных осадках водоемов, поверхностных, сточных, грунтовых водах и даже питьевой воде [1-6]. Несмотря на относительно низкий уровень присутствия фармполлютантов в природной среде, их постоянное пополнение может привести к высоким долговременным концентрациям и стимулировать отрицательное воздействие на человека и природу [7–9]. Неизбежное попадание лекарственных средств (парацетамола в частности) в окружающую среду обусловлено их широким использованием и несовершенством способов утилизации фармацевтических отходов (растворение в воде, сжигание, размещение на полигонах) [10–11]. Полученные нами результаты показали, что продукт бактериальной деструкции парацетамола (ПБП) актинобактериями рода *Rhodococcus* проявляет выраженные стимулирующие свойства в отношении лекарственных растений семейств *Plantaginaceae*, *Lamiaceae*, *Urticaceae*, *Linaceae* и др. и может использоваться как индуктор накопления в них биологически активных веществ [12].

В связи с этим **цель настоящего исследования** – изучить фитостимулирующее действие продукта биодеструкции парацетамола на лекарственные растения сем. *Asteraceae* на примере календулы лекарственной (*Calendula officinalis* L.).

МАТЕРИАЛЫ И МЕТОДЫ

В работе использовали продукт биодеструкции парацетамола (Anqiu Lu'an Pharmaceutical Co., Ltd., Китай) штаммом *Rhodococcus ruber* ИЭГМ 77 из региональной профилированной коллекции алканотроф-

ных микроорганизмов (официальный акроним коллекции ИЭГМ, ЦКП 480868, УНУ 73559, WDCM 768)¹, полученный на базе лаборатории алканотрофных микроорганизмов ПФИЦ УрО РАН.

Для исследования динамики накопления биомассы цветков календулы лекарственной и содержания в них флавоноидов проводили полевой эксперимент с мая по октябрь на базе питомника Пермского государственного национального исследовательского университета имени А. Г. Генкеля. В эксперименте были использованы семена календулы лекарственной (агрофирма «Аэлита», Россия), посеянные в мае на трех площадках площадью 1,5 м² каждая (контрольной и двух опытных), не различающихся по освещенности и прочим условиям. На опытных площадках появившиеся через несколько дней после посадки проростки были обработаны суспензией ПБП (2 г на 1 л воды) и стимулятором роста «Циркон» фирмы ННПП «НЭСТ М» (1 мл на 10 л воды) [13]. Обработку растений данными агентами проводили трехкратно с интервалом один месяц. Цветки календулы лекарственной собирали в начале распускания трубчатых цветков с июля по октябрь, высушивали воздушно – теневым способом и использовали для определения прироста их биомассы гравиметрическим методом, а также изменения содержания флавоноидов спектрофотометрическим методом на основе реакции с хлоридом алюминия (спектрофотометр Portlab 511, Portlab, Россия)². Для сравнительного анализа интенсивности прироста биомассы цветков и прогноза накопления в них флавоноидов применили кинетическое моделирование [14–15].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Общий сбор биомассы цветков календулы лекарственной при обработке ПБП увеличился на

$$\frac{349,37-225,05}{225,05} \cdot 100 \% = 55,2 \%,$$

в то время как стимулятором роста «Циркон» – только на

$$\frac{280,14-225,05}{225,05} \cdot 100 \% = 24,5 \%$$

по сравнению с контролем (таблица 1). Таким образом, эффективность применения ПБП вместо стимулятора роста «Циркон» составила

$$\frac{349,37-280,14}{280.14} \cdot 100 \% = 24,7 \%.$$

Максимальный прирост биомассы цветков календулы лекарственной наблюдается на 59-е сут (рисунок 1). При этом прирост биомассы сначала увеличивается до 59 сут, после чего начинает уменьшаться примерно с той же скоростью. На первый взгляд создается впечатление, что сбор растительного сырья можно завершить. Однако порядка 40 % от общего сбора сырья получено после 60-ти сут, следовательно, сбор цветков календулы лекарственной можно продолжать до конца вегетационного периода, то есть до конца октября в условиях Западного Урала. Наблюдается увеличение прироста биомассы цветков при использовании обоих стимуляторов (кривые 2 и 3) по сравнению с контролем, однако при явном превышении положительного влияния ПБП над стимулятором роста «Циркон».

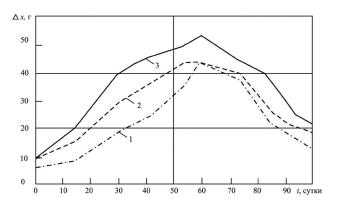


Рисунок 1. Зависимость прироста Δx сухой биомассы цветков календулы лекарственной от времени сбора:

1 – контроль; 2 – растения обработаны стимулятором роста «Циркон»; 3 – растения обработаны продуктом биодеструкции парацетамола

Figure 1. Dependence of the increment Δx of dry biomass of calendula officinalis flowers on the collection time:

1 – control; 2 – plants treated with growth stimulator "Zircon"; 3 – plants treated with biodegradation product of paracetamol

Для сравнительного анализа интенсивности прироста биомассы цветков календулы лекарственной при обработке растений данными агентами применили кинетическое моделирование. При этом использо-

вали кинетические уравнения 1-го порядка $\frac{dx}{dt} = kx$

и 0-го порядка
$$\frac{dx}{dt} = kx^0 = k$$
 .

Как видно из рисунка 2, количество собранной сухой биомассы цветков календулы лекарственной в интервале (0; 59) сут нарастает по экспоненциальной зависимости от времени, а в интервале (59; 101) сут – линейно. На нелинейном участке для опре-

¹ Regional Specialised Collection of Alkanotrophic Microorganisms (WDCM # 768). Available at: http://iegmcol.ru/ Accessed: 21.10.2022.

 $^{^2}$ Государственная фармакопея РФ. Издание XIV. Т. IV. ФС.2.5.0030.15 «Ноготков лекарственных цветки». Доступно по: ttps://pharmacopoeia.ru/fs-2-5-0030-15-nogotkov-lekarstvennyh-tsvetki/ Ссылка активна на 21.10.2022.

Таблица 1. Динамика накопления сухой биомассы цветков календулы лекарственной

Table 1. Accumulation dynamics of dry biomass of calendula officinalis flowers

Дата сбора Collection date	Текущее время сбора t, сут Current collection time t, days	Macca цветков календулы лекарственной Mass of flowers of calendula officinalis						
		Контроль (вода) Control (water)		Растения обработаны стимулятором роста «Циркон» Plants are treated with growth stimulator "Zircon"		Растения обработаны ПБП Plants treated with BDP		
		Δ x *, r Δx*, g	<i>х</i> *, г <i>х</i> *, g	Δx*, r Δx*, g	<i>х</i> *, г <i>х</i> *, g	Δx*, r Δx*, g	х*, г х*, g	
16.07.18	0	5,55	5,55	9,05	9,05	9,10	9,10	
30.07.18	14	8,60	14,15	14,90	23,95	19,55	28,65	
16.08.18	31	18,70	32,85	28,90	52,85	39,85	68,50	
27.08.18	42	24,40	57,25	35,40	88,25	46,20	114,70	
07.09.18	53	34,05	91,30	43,45	131,70	49,55	164,25	
13.09.18	59	44,10	135,40	43,60	175,30	53,85	218,10	
28.09.18	74	38,20	173,60	39,60	214,90	45,22	263,32	
10.10.18	86	21,70	195,30	25,95	240,85	38,60	301,92	
17.10.18	93	17,30	212,60	21,05	261,90	26,40	328,32	
25.10.18	101	12,45	225,05	18,24	280,14	21,05	349,37	

Примечание. * Δx – биомасса цветков на день сбора; *x – накопленная биомасса.

Note. * Δx is the biomass of flowers on the day of collection: *x is accumulated biomass.

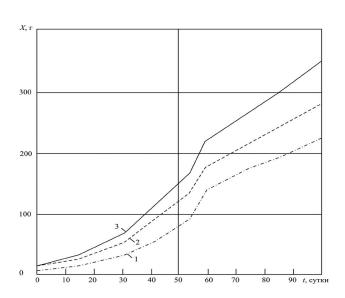


Рисунок 2. Зависимость количества сухой биомассы (x) цветков календулы лекарственной от времени сбора:

1 – контроль; 2 – растения обработаны стимулятором роста «Циркон»; 3 – растения обработаны продуктом биодеструкции парацетамола

Figure 2. Dependence of the amount of dry biomass (x) of flowers of calendula officinalis on the time of collection:

1 – control; 2 – plants treated with growth stimulator "Zircon"; 3 – plants treated with biodegradation product of paracetamol

деления скорости прироста биомассы использовали кинетическое уравнение 1-го порядка $\frac{dx}{dt} = kx$ при $x\big|_{t=0} = x_0$, где x_0 – количество сухой биомассы при t=0, то есть 5,55 г; 9,05 г и 9,10 г (таблица 1 и рису-

нок 2). Здесь k – параметр скорости роста собранной биомассы. Интегрируя дифференциальное уравнение:

$$\int_{x_0}^{x} \frac{dx}{dt} = k \int_{0}^{t} t dt; \ln x - \ln x_0 = kt; \ln \frac{x}{x_0} = kt ,$$

получили: $x = x_0 \cdot e^{kt}$ – выражение для кинетических кривых в интервале (0; 59) суток. Параметр скорости роста биомассы k, определенный методом наименьших квадратов по данным таблицы 1, составил 0,04638; 0,05626 и 0,06314 сут для кривых 1, 2 и 3 соответственно.

На линейном участке кривых в интервале (59; 101) сут справедливо кинетическое уравнение 0-го

порядка
$$\frac{dx}{dt} = kx^0 = k$$
 при начальном условии

 $x|_{t=59\,{\rm суток}}=x_0^{59}$, где x_0^{59} – данные таблицы 1 на 59-е сут. Отсюда выражение для кинетических кривых принимает вид: $x=x_0^{59}+k(t-59)$. На линейном участке параметр скорости k, как и скорость прироста количества собранной биомассы, составили

$$\frac{225,05-135,40}{100-59} = 2,187, \quad \frac{280,14-175,30}{100-59} = 2,557$$

и
$$\frac{349,37-218,10}{100-59}$$
 = 3,202 г/сут

(для кривых 1, 2 и 3 на рисунке2).

Сравнение параметров скорости прироста биомассы цветков (таблица 2) показало, что на нелинейном и линейном участках кривых интенсивность

сбора при обработке растений ПБП выше, чем при обработке стимулятором роста «Циркон» (см. рисунок 2).

Таблица 2. Параметры скорости прироста биомассы цветков календулы лекарственной при обработке разными агентами

Table 2. Parameters of the biomass growth rate of calendula officinalis flowers treated with different agents

Параметры скорости* Speed options*	Интервал времени cGopa, сут Collection time interval, days	Контроль Control	Растения обработаны стимулятором роста «Циркон» Plants are treated with growth stimulator "Zircon"	Растения обработаны ПБП Plants treated with BDP
k, сут -1 k, day-1	(0; 59)	0,04638	0,05626	0,06314
k, г/сут k, g/day	(59; 100)	2,187	2,557	3,202

Примечание. * Различие единиц измерения параметра скорости связано с различным порядком кинетического уравнения.

Note. * The difference in the units of measurement of the velocity parameter is due to the different order of the kinetic equation.

Сравнительный анализ динамики накопления суммы флавоноидов в цветках календулы лекарственной показал преимущество обработки растений ПБП перед обработкой стимулятором роста «Циркон» и ростом без стимуляторов (контроль). Так на 59-й день при максимуме сбора биомассы (см. таблица 1) увеличение содержания флавоноидов в цветках при обработке растений ПБП составило 31,7 % по сравнению с контролем – водой (таблица 3). При использовании стимулятора роста «Циркон» содержание флавоноидов с 42-го по 74-й дни сбора находилось на уровне контрольных значений (рисунок 3).

В соответствии с требованиями Государственной Фармакопеи РФ содержание флавоноидов в цветках календулы лекарственной должно быть не менее 1 %1, что наблюдалось в цветках, собранных с площадки, обработанной стимулятором роста «Циркон», уже на 5-й день сбора (рисунок 3). Однако дальнейшая стимуляция растений данным агентом оказалась менее эффективной по сравнению со стимуляцией ПБП. При обработке растений стимулятором роста «Циркон» датой начала сбора цветков календулы в рассматриваемый вегетационный период можно считать 20 июля, ПБП – 1 августа, а без обработки стимуляторами роста – 14 августа. При этом стимуляторы роста увеличивают дату окончания сбора растительного сырья на 10 суток (рисунок 3).

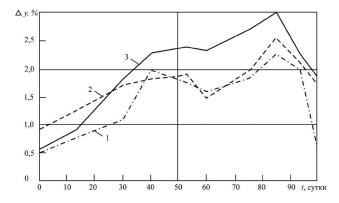


Рисунок 3. Зависимость содержания флавоноидов (Δy) в цветках календулы лекарственной от времени сбора:

1 – контроль; 2 – растения обработаны стимулятором роста «Циркон»; 3 – растения обработаны продуктом биодеструкции парацетамола

Figure 3. Dependence of the content of flavonoids (Δy) in the flowers of calendula officinalis on the time of collection:

1 – control; 2 – plants treated with growth stimulator "Zircon"; 3 – plants treated with biodegradation product of paracetamol

Количество флавоноидов y, r/m^2 , содержащееся в растительном сырье, собранном с 1 m^2 площади посева, оценили по формуле (1):

$$y = \left(\sum_{i=1}^{n} \Delta y_i \Delta x_i\right) / (100 \text{ S}), \tag{1}$$

где Δy_i – содержание флавоноидов на день сбора, % (см. таблицу 2); Δx_i – сухая биомасса на день сбора с содержанием флавоноидов не менее 1 %, г (см. таблицу 1); S – площадь участка, M^2 , n – количество дней сбора сырья.

Количество флавоноидов в цветках календулы лекарственной при обработке растений ПБП составило 4,868 г/м², стимулятором роста «Циркон» – 3,400 г/м² и без обработки данными агентами – 2,427 г/м². Таким образом, при использовании ПБП содержание флавоноидов в цветках календулы лекарственной увеличилось на 100,6 %, а препарата «Циркон» – на 40,1 %.

ЗАКЛЮЧЕНИЕ

Продукт бактериальной деструкции парацетамола оказывает выраженное стимулирующее действие на календулу лекарственную (Calendula officinalis L.), сем. Asteraceae, существенно увеличивая биомассу цветков и содержание в них флавоноидов по сравнению с контролем (водой) и стимулятором роста «Циркон». С применением кинетического моделирования установлены значения параметров скорости роста биомассы растительного сырья при обработке растений данными агентами, осуществлен прогноз накопления флавоноидов и обоснованы сроки сбора цветков календулы лекарственной в условиях Западного Урала. Предложен математический подход к обработ-

¹ Государственная фармакопея РФ. Издание XIV. Том IV. ФС.2.5.0030.15 «Ноготков лекарственных цветки». Доступно по: https://pharmacopoeia.ru/fs-2-5-0030-15-nogotkov-lekarstvennyh-tsvetki/ Ссылка активна на 21.10.2022.

Таблица 3. Динамика изменения содержания суммы флавоноидов в цветках календулы лекарственной при обработке разными агентами

Table 3. Dynamics of changes in the content of the total flavonoids in the flowers of calendula officinalis treated with different agents

	Текущее время	Содержание суммы флавоноидов в цветках календулы лекарственной The content of the sum of flavonoids in the flowers of calendula officinalis				
Дата сбора Collection date	c6opa t, cyt Current collection time t, days	Контроль (вода) Control (water)	Pастения обработаны стимулятором роста «Циркон» Plants are treated with growth stimulator "Zircon"	Растения обработаны ПБП Plants treated with BDP		
		Δy*, %	Δy*, %	Δy*, %		
16.07.18	0	0,49	0,79	0,56		
30.07.18	14	0,79	1,23	0,91		
16.08.18	31	1,18	1,63	1,69		
27.08.18	42	1,97	1,73	2,27		
07.09.18	53	1,82	1,90	2,32		
13.09.18	59	1,67	1,59	2,20		
28.09.18	74	1,92	2,02	2,52		
10.10.18	86	2,34	2,65	2,99		
17.10.18	93	1,97	2,20	2,31		
25.10.18	101	0,64	1,68	1,88		

Примечание. *Ду – содержание флавоноидов в сырье на день сбора.

Note. $^*\Delta y$ is the content of flavonoids in raw materials on the day of collection.

ке результатов эксперимента, который может быть использован при анализе интенсивности прироста биомассы и прогноза накопления биологически активных веществ в различных лекарственных растениях, обработанных фитостимулирующими агентами.

ЛИТЕРАТУРА

- Fekadu S., Alemayehu E., Dewil R., Van der Bruggen B. Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge. Science of the Total Environment. 2019;654:324–337. DOI: 10.1016/j.scitotenv.2018.11.072.
- Moreau M., Hadfield J., Hughey J., Sanders F., Lapworth D. J., White D., Civil W. A baseline assessment of emerging organic contaminants in New Zealand groundwater. Science of the Total Environment. 2019;686:425. DOI: 10.1016/j.scitotenv.2019.05.210.
- Madikizela L. M., Botha T. L., Kamika I., Msagati T. A. M. Uptake, Occurrence, and Effects of Nonsteroidal Anti-Inflammatory Drugs and Analgesics in Plants and Edible Crops. The Journal of Agricultural and Food Chemistry. 2021;70:34–45. DOI: 10.1021/ACS. JAFC.1C06499.
- Madikizela L. M., Ncube S. Occurrence and ecotoxicological risk assessment of non-steroidal anti-inflammatory drugs in South African aquatic environment: What is known and the missing information. *Chemosphere*. 2021;280:130688. DOI: 10.1016/j. chemosphere.2021.130688.
- Yan J., Lin W., Gao Z., Ren Y. Use of selected NSAIDs in Guangzhou and other cities in the world as identified by wastewater analysis. *Chemosphere*. 2021;279:130529. DOI: 10.1016/j. chemosphere.2021.130529.
- Hanafiah Z. M., Wan Mohtar W. H. M., Abd Manan T. S. B., Bachi N. A., Abdullah N. A., Abd Hamid H. H., Beddu S., Mohd Kamal N. L., Ahmad A., Wan Rasdi N. The occurrence of non-steroidal anti-inflammatory drugs (NSAIDs) in Malaysian urban domestic wastewater. *Chemosphere*. 2022;287:132134. DOI: 10.1016/J. CHEMOSPHERE.2021.132134.
- Gimenez V., Nunes B. Effects of commonly used therapeutic drugs, paracetamol, and acetylsalicylic acid, on key physiological

- traits of the sea snail Gibbula umbilicalis. *Environmental Science and Pollution Research*. 2019;26(21):21858–21870. DOI: 10.1007/s11356-019-04653-w.
- Almeida A., Sole M., Soares A. M. V. M., Freitas R. Anti-inflammatory drugs in the marine environment: Bioconcentration, metabolism and sub-lethal effects in marine bivalves. *Environmental Pollution*. 2020;263(Pt A):114442. DOI: 10.1016/j.envpol.2020.114442.
- Staszny A., Dobosy P., Maasz G., Szalai Z., Jakab G., Pirger Z., Szeberenyi J., Molnar E., Pap L. O., Juhasz V., Weiperth A., Urbanyi B., Kondor A. C., Ferincz A. Effects of pharmaceutically active compounds (PhACs) on fish body and scale shape in natural waters. *PeerJ.* 2021;9:e10642. DOI: 10.7717/peerj.10642.
- Ivshina I., Tyumina E., Vikhareva E. Biodegradation of emerging pollutants: Focus on pharmaceuticals. *Microbiology Australia*. 2018;39(3):117–122. DOI: 10.1071/MA18037.
- Singh V., Suthar S. Occurrence, seasonal variations, and ecological risk of pharmaceuticals and personal care products in River Ganges at two holy cities of India. *Chemosphere*. 2021;268:129331. DOI: 10.1016/j.chemosphere.2020.129331.
- 12. Мишенина И. И., Вихарева Е. В., Гуляев Д. К. Исследование фитостимулирующего действия продуктов биодеструкции парацетамола на лекарственные растения семейства Яснотковые. Медико-фармацевтический журнал «Пульс». 2020;22(4):62–66. DOI: 10.26787/nydha-2686-6838-2020-22-4-62-66.
- Малеванная Н. Н. Рострегулирующий комплекс, способ его получения, препарат на его основе и применение в сельскохозяйственной практике. Патент РФ на изобретение № RU 2257059 C1. 27.07.2005. Доступно по: https://patents.google. com/patent/RU2257059C1/ru. Ссылка активна на 22.10.2022.
- Селянинов А. А., Осипенко М. А., Баранова А. А., Вихарева Е. В., Хренков А. Н. Числовые характеристики кинетически моделируемого простого нестационарного случайного процесса. Прикладная математика и вопросы управления. 2019;3:65–83. DOI: 10.15593/2499-9873/2019.3.04.
- Хренков А. Н., Вихарева Е. В., Тумилович Е. Ю., Карпенко Ю. Н., Селянинов А. А., Тюмина Е. А. Хроматографический анализ ацетилсалициловой кислоты в культуральных жидкостях родококков. Вестник Московского университета. 2020;61(5):388–393. DOI: 10.3103/S0027131420050053.

REFERENCES

- Fekadu S., Alemayehu E., Dewil R., Van der Bruggen B. Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge. Science of the Total Environment. 2019;654:324–337. DOI: 10.1016/j.scitotenv.2018.11.072.
- Moreau M., Hadfield J., Hughey J., Sanders F., Lapworth D. J., White D., Civil W. A baseline assessment of emerging organic contaminants in New Zealand groundwater. Science of the Total Environment. 2019;686:425. DOI: 10.1016/j.scitotenv.2019.05.210.
- Madikizela L. M., Botha T. L., Kamika I., Msagati T. A. M. Uptake, Occurrence, and Effects of Nonsteroidal Anti-Inflammatory Drugs and Analgesics in Plants and Edible Crops. *The Journal of Agricultural and Food Chemistry*. 2021;70:34–45. DOI: 10.1021/ACS. JAFC.1C06499.
- Madikizela L.M., Ncube S. Occurrence and ecotoxicological risk assessment of non-steroidal anti-inflammatory drugs in South African aquatic environment: What is known and the missing information. *Chemosphere*. 2021;280:130688. DOI: 10.1016/j. chemosphere.2021.130688.
- Yan J., Lin W., Gao Z., Ren Y. Use of selected NSAIDs in Guangzhou and other cities in the world as identified by wastewater analysis. *Chemosphere*. 2021;279:130529. DOI: 10.1016/j. chemosphere.2021.130529.
- Hanafiah Z. M., Wan Mohtar W. H. M., Abd Manan T. S. B., Bachi N. A., Abdullah N. A., Abd Hamid H. H., Beddu S., Mohd Kamal N. L., Ahmad A., Wan Rasdi N. The occurrence of non-steroidal anti-inflammatory drugs (NSAIDs) in Malaysian urban domestic wastewater. *Chemosphere*. 2022;287:132134. DOI: 10.1016/J. CHEMOSPHERE.2021.132134.
- Gimenez V., Nunes B. Effects of commonly used therapeutic drugs, paracetamol, and acetylsalicylic acid, on key physiological traits of the sea snail Gibbula umbilicalis. *Environmental Science* and *Pollution Research*. 2019;26(21):21858–21870. DOI: 10.1007/ s11356-019-04653-w.

- Almeida A., Sole M., Soares A. M. V. M., Freitas R. Anti-inflammatory drugs in the marine environment: Bioconcentration, metabolism and sub-lethal effects in marine bivalves. *Environmental Pollution*. 2020;263(Pt A):114442. DOI: 10.1016/j.envpol.2020.114442.
- Staszny A., Dobosy P., Maasz G., Szalai Z., Jakab G., Pirger Z., Szeberenyi J., Molnar E., Pap L. O., Juhasz V., Weiperth A., Urbanyi B., Kondor A. C., Ferincz A. Effects of pharmaceutically active compounds (PhACs) on fish body and scale shape in natural waters. PeerJ. 2021;9:e10642. DOI: 10.7717/peerj.10642.
- Ivshina I., Tyumina E., Vikhareva E. Biodegradation of emerging pollutants: Focus on pharmaceuticals. *Microbiology Australia*. 2018;39(3):117–122. DOI: 10.1071/MA18037.
- Singh V., Suthar S. Occurrence, seasonal variations, and ecological risk of pharmaceuticals and personal care products in River Ganges at two holy cities of India. *Chemosphere*. 2021;268:129331. DOI: 10.1016/j.chemosphere.2020.129331.
- Mishenina I.I., Vikhareva E.V., Gulyaev D.K. The study fitostimulin action of the products of biodegradation of paracetamol on medicinal plants of the family Lamiacea. *Medical & pharmaceutical journal "Pulse"*. 2020;22(4):62–66. (In Russ.) DOI: 10.26787/nydha-2686-6838-2020-22-4-62-66.
- Malevannaya N. N. Growth-regulating complex, method of its production, drug based on it and application in agricultural practice. Patent RUS № 2257059 C1. 27.07.2005. Available at: https://patents.google.com/patent/RU2257059C1/ru. Accessed: 22.10.2022. (In Russ.)
- Selyaninov A. A., Osipenko M. A., Baranova A. A., Vikhareva E. V., Khrenkov A. N. Numerical characteristics of a kinetically modeled simple non-stationary random process. *Applied Mathematics and Control Sciences*. 2019;3:65–83. (In Russ.) DOI: 10.15593/2499-9873/2019.3.04.
- Khrenkov A. N., Vikhareva E. V, Tumilovich E. Yu., Karpenko Yu. N., Selyaninov A. A., Tyumina E. A. Chromatographic analysis of acetylsalicylic acid in Rhodococcus cultural fluids. *Moscow Univer*sity Chemistry Bulletin. 2020;61(5):309–314. (In Russ.) DOI: 10.3103/ S0027131420050053.