https://doi.org/10.33380/2305-2066-2023-12-3-143-150 УДК 615.322:579.61

Оригинальная статья / Research article

Антибактериальная активность эфирных масел тимьяна ползучего (Thymus serpyllum L.) и тимьяна Маршалла (Thymus marschallianus Willd.)

О. Г. Шаповал¹, А. С. Шереметьева 1 , Н. А. Дурнова 1 , Н. К. Мухамадиев 2 , Г. Т. Раббимова³, М. Х. Назирбеков⁴, М. А. Купряшина^{1, 5}

- Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский государственный медицинский университет имени В. И. Разумовского» Министерства здравоохранения Российской Федерации (ФГБОУ ВО Саратовский ГМУ им. В. И. Разумовского Минздрава России), 410012, Россия, г. Саратов, Россия, ул. Большая Казачья, д. 112
- . ² Самаркандский государственный университет имени Шарофа Рашидова (СамГУ), 140104, Узбекистан, г. Самарканд, ул. Университетский бульвар, д. 15
- ³ Самаркандский государственный медицинский университет (СамГМУ), 140100, Узбекистан, г. Самарканд, ул. Амира Темура, д. 18 ⁴ Государственный научный центр по контролю качества и оборота ветеринарных лекарственных средств и кормовых добавок, 100208, Узбекистан, г. Ташкент, ул. Дийдор, д. 100
- ⁵ Институт биохимии и физиологии растений и микроорганизмов обособленное структурное подразделение Федерального государственного бюджетного учреждения науки Федерального исследовательского центра «Саратовский научный центр Российской академии наук», 410049, Россия, г. Саратов, пр. Энтузиастов, д. 13
- $\textbf{ORCID:} O. \Gamma. \\ \texttt{Uanoba}_{3} \texttt{https://orcid.org/0000-0002-8290-7524;} A. C. \\ \texttt{Uepemetbeba}_{3} \texttt{https://orcid.org/0000-0002-8318;} \\ \textbf{H. A. } \\ \texttt{Дурновa}_{3} \texttt{https://orcid.org/0000-0003-4628-9519;} \\ \texttt{Uanoba}_{3} \texttt{https://orcid.org/0000-0002-8290-7524;} \\ \textbf{A. } \\ \texttt{Uanoba}_{3} \texttt{https://orcid.org/0000-0003-4628-9519;} \\ \texttt{Uanoba}_{3} \texttt{Uanoba}_{3}$
 - H. К. Мухамадиев https://orcid.org/0000-0003-4776-4625; Г. Т. Раббимова https://orcid.org/0000-0003-2519-027X;
 - М. Х. Назирбеков https://orcid.org/0000-0002-7714-8316; М. А. Купряшина https://orcid.org/0000-0002-2136-5362.

Статья поступила: 16.02.2023 Статья принята в печать: 20.06.2023 Статья опубликована: 25.08.2023

Введение. Эфирные масла, получаемые из растений, являются природными источниками антибактериальных веществ широкого спектра действия, включая фенол и его производные. Стабильные эмульсии эфирных масел используются местно в качестве новых антимикробных

Цель. Целью данного исследования явилась оценка антимикробной активности эфирных масел тимьяна ползучего (Thymus serpyllum L.) и тимьяна Маршалла (Thymus marschallianus Willd.) в отношении клинических штаммов.

Материалы и методы. Антимикробную активность эфирных масел определяли методом серийных разведений в бульоне Мюллера – Хинтон при микробной нагрузке 5×10^{5} КОЕ/мл в отношении 6 штаммов Staphylococcus aureus – одного стандартного (S. aureus FDA 209P) и 5 клинических; 2 штаммов Escherichia coli – стандартного E. coli ATCC 25922 (М-17) и клинического; 2 штаммов Pseudomonas aeruginosa – стандартного P. aeruginosa ATCC 27835 и клинического.

Результаты и обсуждение. Установлено, что бактерицидная минимальная ингибирующая концентрация (МИК) эфирного масла T. serpyllum в отношении опытных штаммов S. aureus составила для 5 штаммов 1097,5 мкг/мл, для одного – 2195 мкг/мл. Бактериостатические концентрации установлены для трех штаммов и составили для двух 548,75 и одного 1097,5 мкг/мл. МИК эфирного масла T. marschallianus в отношении 5 опытных штаммов стафилококков составили 120 мкг/мл, в отношении одного – 480 мкг/мл и носили бактерицидный характер. В отношении всех штаммов грамотрицательных бактерий МИК эфирных масел тимьянов обоих видов носили бактерицидный характер и составили 1097 и 960 мкг/мл. С учетом количественного содержания тимола и его изомеров в эфирных маслах МИК_{«п} T. marschallianus и Т. serpyllum для опытных штаммов стафилококков составили 108,9 и 496,59 мкг/мл, для опытных штаммов грамотрицательных бактерий 683,91 и 783,43 мкг/мл соответственно.

Заключение. Согласно полученным значениям МИК и МИК см антимикробная активность эфирного масла тимьяна Маршалла оказалась существенно более высокой по сравнению с эфирным маслом тимьяна ползучего в отношении опытных штаммов S. aureus.

Ключевые слова: антибактериальная активность, эфирные масла, Thymus serpyllum L., Thymus marschallianus Willd.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей

Вклад авторов. О. Г. Шаповал и А. С. Шереметьева – проведение исследования, подготовка и написание текста статьи. Н. А. Дурнова и Н.К. Мухамадиев – определение концепции и дизайна исследования, написание текста статьи. Г.Т. Раббимова, М.Х. Назирбеков и М. А. Купряшина – проведение исследования. Все авторы участвовали в анализе полученных данных и обсуждении результатов.

Финансирование. Данное исследование проводится в рамках совместного гранта «Эффективность применения эфирных масел растений в этиотропной терапии урогенитальных инфекций у беременных», полученного в рамках межвузовского конкурса перспективных научных исследований Саратовского государственного медицинского университета им. В. И. Разумовского и Самаркандского государственного медицинского института, регистрационный номер государственного учета научно-исследовательской, опытно-конструкторской и технологической работы гражданского назначения 121090200092-4.

Благодарность. Авторы выражают благодарность ведущему специалисту по флоре Саратовской области – доктору биологических наук, профессору Михаилу Александровичу Березуцкому за консультативную помощь в процессе сбора и обработке растительного сырья.

Для цитирования: Шаповал О. Г., Шереметьева А. С., Дурнова Н. А., Мухамадиев Н. К., Раббимова Г. Т., Назирбеков М. Х., Купряшина М. А. Антибактериальная активность эфирных масел тимьяна ползучего (Thymus serpyllum L.) и тимьяна Маршалла (Thymus marschallianus Willd.). Разработка и регистрация лекарственных средств. 2023;12(3):143–150. https://doi.org/10.33380/2305-2066-2023-12-3-143-150

© Шаповал О. Г., Шереметьева А. С., Дурнова Н. А., Мухамадиев Н. К., Раббимова Г. Т., Назирбеков М. Х., Купряшина М. А., 2023 © Shapoval O. G., Sheremetyeva A. S., Durnova N. A., Mukhamadiev N. Q., Rabbimova G. T., Nazirbekov M. K., Kupryashina M. A., 2023

Antibacterial Activity of Essential Oils of *Thymus serpyllum* L. and *Thymus marschallianus* Willd.

Olga G. Shapoval¹, Anna S. Sheremetyeva¹⊠, Natalya A. Durnova¹, Nurali Q. Mukhamadiev², Gulnora T. Rabbimova³, Mavlonbek K. Nazirbekov⁴, Maria A. Kupryashina¹,⁵

- 1 Saratov State Medical University named after V. I. Razumovsky (Razumovsky University), 112, Bolshaya Kazachya str., Saratov, 410012, Russia
- ² Samarkand State University (SamSU), 15, University Boulevard str., Samarkand, 140104, Uzbekistan
- ³ Samarkand State Medical University, 18, Amir Temur str., Samarkand, 140100, Uzbekistan
- ⁴ State research center for quality control and circulation of veterinary drugs and feed additives, 100, Didor str., Tashkent, 100208, Uzbekistan
- s Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13, Prospekt Entuziastov, Saratov, 410049, Russia
- oxdot Corresponding author: Anna S. Sheremetyeva. **E-mail:** anna-sheremetyewa@yandex.ru

ORCID: Olga G. Shapoval – https://orcid.org/0000-0002-8290-7524; Anna S. Sheremetyeva – https://orcid.org/0000-0002-8318;

Natalya A. Durnova – https://orcid.org/0000-0003-4628-9519; Nurali Q. Mukhamadiev – https://orcid.org/0000-0003-4776-4625;

Gulnora T. Rabbimova – https://orcid.org/0000-0003-2519-027X; Mavlonbek K. Nazirbekov – https://orcid.org/0000-0002-7714-8316;

Maria A. Kupryashina – https://orcid.org/0000-0002-2136-5362.

Abstract

Introduction. Plant essential oils are supposed to be applied for local treatment of infectious focuses.

Aim. The aim of this study was evaluation of antimicrobial activity of essential oils of *Thymus serpyllum* L. and *Thymus marschallianus* Willd., widely distributed in the Saratov region.

Materials and methods. Antimicrobial activity of the essential oils was determined by a serial dilution test at the microbial number of 5×10^5 CFU/ml against 6 strains of *Staphylococcus aureus*, including *S. aureus* FDA 209P and five clinical, 2 strains of *Escherichia coli* – *E. coli* ATCC 25922 and one clinical, two strains of *Pseudomonas aeruginosa* – *P. aeruginosa* ATCC 27835 and one clinical.

Results and discussion. The bactericidal minimal inhibitory concentrations (MICs) of essential oil of *T. serpyllum* were determined for all strains of staphylococci (for 5 - 1097,5, for $1 - 2195 \mu g/ml$). The bacteriostatic MICs were determined for 3 strains (for 2 - 548,75, for $1 - 1097,5 \mu g/ml$). MICs of the *T. marschallianus* essential oil were bactericidal for all strains of *S. aureus* (120 for 5 and 480 $\mu g/ml$ for 1 strain). For all test strains of gramnegative bacteria MICs of the essential oils of both species were bactericidal and amounted to 1097 and 960 $\mu g/ml$. Considering the chemical composition of the oils by thymol and its isomers, MIC₅₀ of *T. marschallianus* v. *T. serpyllum* for the test strains amounted 108,89 and 496,59, for the test strains of gram-negative bacteria 683,91 and 783,43 $\mu g/ml$ respectively.

Conclusion. According to the values of MIC₅₀ antistaphylococcal activity of the essential oils of *T. marschallianus* was significantly higher than this activity of the essential oils of *T. serpyllum*.

Keywords: antibacterial activity, essential oils, Thymus serpyllum L., Thymus marschallianus Willd.

Conflict of interest. The authors declare that they have no obvious and potential conflicts of interest related to the publication of this article.

Contribution of the authors. Olga G. Shapoval and Anna S. Sheremetyeva – the study, the article writing. Natalya A. Durnova and Nurali Q. Mukhamadiev – conception and design of the study, the article writing. Gulnora T. Rabbimova, Mavlonbek K. Nazirbekov and Maria A. Kupryashina – the study. All authors participated in the analysis of the obtained data and discussion of the results.

Funding. This study is carried out within the framework of the joint grant "The effectiveness of the use of essential oils of plants in the etiotropic therapy of urogenital infections in pregnant women", received in the framework of the interuniversity competition for promising scientific research of the Saratov State Medical University. V. I. Razumovsky and Samarkand State Medical Institute, registration number of the state registration of research, development and technological work for civil purposes 121090200092-4.

Acknowledgment. The authors express their gratitude to the leading specialist in the flora of the Saratov region, Doctor of Biological Sciences, Professor Mikhail A. Berezutsky, for his advisory assistance in the process of collecting and processing plant materials.

For citation: Shapoval O. G., Sheremetyeva A. S., Durnova N. A., Mukhamadiev N. Q., Rabbimova G. T., Nazirbekov M. K., Kupryashina M. A. Antibacterial activity of essential oils of *Thymus serpyllum* L. and *Thymus marschallianus* Willd. *Drug development & registration*. 2023;12(3):143–150. (In Russ.) https://doi.org/10.33380/2305-2066-2023-12-3-143-150

ВВЕДЕНИЕ

Масштабное применение антибактериальных препаратов для лечения инфекционных болезней в последние годы привело к существенному увеличению числа антибиотикорезистентных штаммов. В этой связи поиск альтернативных способов лечения инфекций с каждым годом приобретает все большую актуальность и востребованность.

Эфирные масла, получаемые из растений, являются важными источниками антимикробных веществ природного происхождения и благодаря широкому

спектру биологической активности применяются как в практическом здравоохранении, так и в народной медицине [1–3].

Эфирные масла тимьянов, согласно химическому составу, являются одними из наиболее перспективных антимикробных агентов. Антимикробная активность эфирных масел растений основана на содержании монотерпенов, альдегидов, кетонов, простых и сложных эфиров, производных фенола, последние преобладают в эфирном масле тимьянов в виде тимола (2-изопропил-5-метилфенола) и карвакрола (2-ме-

тил-5-(пропан-2-ил)фенола), массовая доля которых достигает 46–54 % [4–6]. У эфирных масел тимьянов она обнаружена в отношении патогенных и оппортунистических бактерий, а также грибов [7, 4–6, 8–10]. Антибактериальные свойства эфирных масел растений обусловлены действием на мембрану клеток, включая наружную мембрану грамотрицательных бактерий, что приводит к нарушению процессов трансмембранного транспорта, ионной проницаемости, работе цепи переноса электронов, но в целом механизм их признается до конца не изученным [7, 10].

В литературе представлены данные об антимикробной активности эмульсий и паров эфирных масел, получаемых из стеблей и листьев тимьянов разных видов, но в отношении тимьяна ползучего (*Thymus serpyllum* L.) и тимьяна Маршалла (*Thymus marschallianus* Willd.) сведений мало из-за большого таксономического разнообразия эфирномасличных растений.

Целью данного исследования явилась оценка антибактериальной активности эфирных масел тимьяна ползучего (*Thymus serpyllum* L.) и тимьяна Маршалла (*Thymus marschallianus* Willd.) в отношении клинических штаммов грамположительных и грамотрицательных бактерий. Для ее достижения задачами исследования послужили получение эфирных масел из растительного сырья указанных видов и оценка их антимикробной активности.

МАТЕРИАЛЫ И МЕТОДЫ

Эфирные масла для эксперимента получали из надземных частей тимьяна Маршалла и тимьяна ползучего.

Трава тимьяна Маршалла собрана в окрестностях поселка Красный Текстильщик Саратовского района на степной возвышенности (долгота: 45.79; широта: 51.36) в фазе цветения (июнь-июль 2021 г.). Определение вида проведено по ключу В. Н. Гладковой и Ю. Л. Меницкого [11] и подтверждено ведущим специалистом по флоре Саратовской области – доктором биологических наук, профессором М. А. Березуцким. Сырье сушили естественным способом в сухом, хорошо проветриваемом месте, затем для получения эфирного масла измельчали до частиц, проходящих сквозь сито с отверстиями размером 2 мм.

Трава тимьяна ползучего, которая не произрастает в регионе, приобретена в аптечной сети (производитель ООО «фирма КИМА», России, серия 0421).

Для подтверждения подлинности сырья был проведен микроскопический анализ, который выполнен на микроскопе Primo Star (Carl Zeiss AG, Германия) согласно ГФ XIV ОФС.1.5.3.0003.15 «Техника микроскопического и микрохимического исследования лекарственного растительного сырья и лекарственных растительных препаратов» [12]. Описание травы тимьяна ползучего соответствовало ФС.2.5.0047.15 «Чабреца трава», а тимьяна Маршалла – ранее проведенным исследованиям, посвященным микроскопическому анализу данного вида [13].

Получение эфирного масла из травы тимьяна Маршалла и тимьяна ползучего проводили с помощью прибора для определения содержания эфирного масла по методу Гинзберга перегонкой с водяным паром согласно требованиям ГФ XIV издания ОФС.1.5.3.0010.15 «Определение содержания эфирного масла в лекарственном растительном сырье и лекарственных растительных препаратах» методом 1: измельченную траву (30 г) помещали в круглодонную колбу объемом 1000 мл, приливали 300 мл воды очищенной и закрывали резиновой пробкой с обратным холодильником. Колбу с содержимым нагревали на колбонагревателе и кипятили в течение двух часов. После окончания перегонки и охлаждения прибора до комнатной температуры полученное эфирное масло собирали из приемника в пробирку.

Анализ химического состава полученных масел осуществляли с помощью газового хроматографа масс-спектрометра YL 6900 GC/MS (Young Lin Instrument Co., Ltd., Корея) с капиллярной колонкой HP-5 30 м \times 0,32 мм с толщиной фазы 0,25 мкм при соблюдении следующих условий: изотермическом режиме (60 °C 3 мин) с повышением до 250 °C (нагрев со скоростью 15 °C/мин) и поддержании достигнутого режима в течение 3 мин. Частота потока газа гелия составила 1 мл/мин, коэффициент разделения – 1:100. Масс-спектрометрический анализ проведен при следующих параметрах работы масс-детектора: время удержания - 3 мин, эмиссия - 50 мА, диапазон сканирования - 30-350 а.е.м., скорость сканирования – 1600 а.е.м./с, температура ионного источника – 230 °C, температура трансфера – 280 °C, время анализа - 21 мин. Идентификацию компонентов проводили на основе сравнения полученных масс-спектров с библиотекой масс-спектров NIST (National Institute of Standards and Technology, США) и по времени удерживания. Для количественного анализа использовали метод внутренней нормализации.

Антимикробную активность эфирных масел определяли в отношении 6 штаммов Staphylococcus aureus – одного стандартного (S. aureus FDA 209P) и 5 клинических; 2 штаммов Escherichia coli – стандартного E. coli ATCC 25922 (M-17) и клинического; 2 штаммов Pseudomonas aeruginosa – стандартного Р. aeruginosa АТСС 27835 и клинического. Все стандартные штаммы получены из музея живых культур кафедры микробиологии, вирусологии и иммунологии ФГБОУ ВО «Саратовский государственный медицинский университет им. В. И. Разумовского» Минздрава России. Клинические штаммы стафилококков выделены на маннит-солевом агаре (HiMedia Laboratories Pvt. Limited, Индия) в ходе бактериологического исследования носоглоточных мазков, взятых от новорожденных детей, госпитализированных в ГУЗ «Саратовская областная детская клиническая больница» г. Саратова, идентифицированы фенотипически с помощью тест-системы СТАФИтест 24 (Erba Lachema s.r.o., Чешская Республика) и плазмокоагулазной активности, по результатам диско-диффузионного метода

чувствительны к цефокситину. Клинический штамм P. aeruginosa выделен на среде Эндо и мясо-пептонном агаре (ФБУН «Государственный научный центр прикладной микробиологии и биотехнологии», Россия) из мочи беременной женщины с инфекцией мочевыводящих путей в бактериологической лаборатории ГУЗ «Саратовская городская клиническая больница № 10», идентифицирован фенотипически с помощью тест-системы для неферментирующих грамотрицательных «ДС-ДИФ-НЕФЕРМ» бактерий (ООО «НПО «Диагностические системы», Россия). По результатам диско-диффузионного метода чувствителен к левофлоксацину и с промежуточным отношением к цефтазидиму. Все штаммы субкультивированы на мясо-пептонном агаре (ГРМ-агар, ФБУН «Государственный научный центр прикладной микробиологии и биотехнологии», Россия). Оценку антимикробной активности проводили макрометодом двукратных серийных разведений в бульоне Мюллера -Хинтон (AppliChem GmbH, Германия) при микробной нагрузке 5×10^5 КОЕ/мл по стандарту мутности ФГБУ «Научный центр экспертизы средств медицинского применения» Минздрава России. Указанный метод принимается рядом исследователей при тестировании антибактериального и противогрибкового действия эфирных масел [8, 9, 14, 15]. Объем каждого разведения для посева составил 1 мл. В качестве контролей использовали питательный бульон без эфирных масел. После инкубации при температуре 37 °C при наличии видимого роста в контроле определяли минимальную ингибирующую концентрацию (МИК), для определения характера которой (бактерицидного или бактериостатического) из пробирок с отсутствием видимого роста осуществляли высев на мясо-пептонный агар.

На основании полученных значений МИК рассчитывали МИК $_{50}$ для опытных штаммов грамположительных и грамотрицательных бактерий с оценкой ее доверительного интервала, а также достоверность различий найденных для каждого вида масел значений МИК $_{50}$ с вероятностью 95 %, используя программу Microsoft Excel пакета программ Microsoft Office 365.

С учетом полученных значений МИК оценивали влияние эфирных масел на относительную респираторную активность опытных штаммов флуориметрическим резазурин-тестом. С этой целью в лунки стерильного 96-луночного планшета вносили по 100 мкл бульонной культуры в стационарной фазе роста, полученной из стартовой концентрации инокулюма 5×10^5 КОЕ/мл, 80 мкл раствора резазурина – Alamar Blue (Sigma-Aldrich, США) концентрацией 1 мкг/мл и по 20 мкл разведений исследуемых эфирных масел (1250–10000 мкг/мл), приготовленных в бульоне Мюллера – Хинтон. Планшеты инкубировали при температуре 37 °С в течение 24 ч, затем регистрировали интенсивность флуоресценции на спектрофлуориметре с микропланшетной приставкой Cary Eclipse

(Agilent Technologies, США) при следующих параметрах: длина волны возбуждения – 530 нм, длина волны эмиссии – 600 нм, ширина щели – 10 нм, время интегрирования - среднее. Значения интенсивности флуоресценции опытных образцов нормировались на бланк (раствор резазурина в бульоне Мюллера – Хинтон), за 100 % была принята дыхательная активность суточной культуры бактерий без добавления масел, нижний порог определен по базовой линии (сигнал/шум). Для статистической обработки полученных данных использовали пакет программы Місrosoft Office Excel. Планки погрешностей на рисунках 1 и 2, отображающих результаты, соответствуют доверительным интервалам для среднеарифметических при уровне значимости p = 0.05. Объем выборки n = 3.

Сравнение антибактериальной активности эфирных масел проводили с тимолом (основного антимикробного вещества эфирных масел тимьяна) методом макроразведений. Базовый раствор тимола концентрацией 20 мг/мл готовили, добавляя к навеске 200 мг 10 мл 10 % водного раствора этанола. На его основе получали разведения тимола в бульоне Мюллера – Хинтон концентрацией от 2000 до 125 мкг/мл объемом 1 мл [14, 16]. Параллельно осуществляли посевы в двукратные разведения этанола в бульоне Мюллера – Хинтон для исключения его антибактериальной активности в используемых концентрациях от 100 000 до 12 500 мкг/мл в связи с использованием его при приготовлении базового раствора тимола.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Согласно данным газожидкостной хроматографии и масс-спектрометрии в составе эфирного масла T. marschallianus наибольшие массовые доли приходятся на тимол и его изомеры – 38,4 %, циклогексен – 8,9 %, g-терпинен – 7,6 %, эндоборнеол – 5,3 %; в составе эфирного масла T. serpyllum массовая доля тимола и его изомеров – 43,9 %, на следующих трех позициях в порядке убывания находятся эвкалиптол – 8,4 %, бензен – 4,2 %, кариофиллен – 2,9 %. В пересчете на содержание тимола и его производных в эфирных маслах установлено, что бактерицидная МИК эфирного масла тимьяна ползучего в отношении шести опытных штаммов S. aureus составила для 5 штаммов 1097,5, для одного – 2195 мкг/мл. Бактериостатические концентрации установлены только для трех штаммов и составили для двух 548,75 и одного 1097,5 мкг/мл. МИК эфирного масла тимьяна Маршалла в отношении 5 опытных штаммов стафилококков составила 120, в отношении одного – 480 мкг/мл и носили бактерицидный характер (таблица 1). В отношении всех опытных штаммов грамотрицательных бактерий МИК тимьяна ползучего и тимьяна Маршалла носили бактерицидный характер и составили 1097,5 и 960 мкг/мл соответственно.

С учетом количественного содержания в эфирных маслах изучаемых видов тимьяна тимола и его изомеров МИК $_{50}$ *T. marschallianus* и *T. serpyllum* для

Таблица 1. МИК эфирных масел T. serpyllum и Thymus marschallianus

Table 1. MIC of essential oils of T. serpyllum and T. marschallianus

	Разведения эфирных масел и соответствующие им концентрации (мкг/мл) тимола и его изомеров Dilutions of essential oils and corresponding to them concentrations (µg/ml) of thymol ant its isomers															
Штамм Strain	Thymus serpyllum L.								Thymus marschallianus Willd.							
	50 (8780)	100 (4390)	200 (2195)	400 (1097,5)	800 (548,75)	1600 (274,38)	3200 (137,19)	6400 (68,6)	50 (7680)	100 (3840)	200 (1920)	400 (960)	800 (480)	1600 (240)	3200 (120)	6400 (60)
S. aureus 209P	_	-	_	_	-	+	+	+	_	_	_	_	_	_	-	+
S. aureus 2963	_	_	-	_	+	+	+	+	_	-	-	_	_	-	_	+
S. aureus 3473	-	-	_	-	+	+	+	+	_	-	_	_	-	-	-	+
S. aureus 3239	_	_	_	-	_*	+	+	+	_	-	_	_	-	-	_	+
S. aureus 3282	_	_	-	_*	+	+	+	+	-	-	_	_	-	-	-	+
S. aureus 2977	-	_	-	-	-*	+	+	+	-	-	_	_	-	+	+	+
E. coli ATCC 25922	_	_	-	-	+	+	+	+	-	-	_	_	+	+	+	+
E. coli 3	-	_	_	_	+	+	+	+	_	_	_	_	+	+	+	+
P. aeruginosa ATCC 27835	-	_	_	_	+	+	+	+	_	_	_	_	+	+	+	+
P. aeruginosa 7728	-	_	_	_	+	+	+	+	_	_	_	_	+	+	+	+

Примечание. * Бактериостатическая концентрация.

Note. * Bacteriostatic concentration.

опытных штаммов стафилококков составили 108,89 и 496,59, для опытных штаммов грамотрицательных бактерий 683,91 и 783,43 мкг/мл соответственно. Установлено, что найденные значения МИК₅₀ с вероятностью 95 % лежат в пределах следующих максимальных и минимальных показателей: в отношении стафилококков для эфирного масла *Т. marschallianus* 71,94–153,82, *Т. serpyllum* – 351,46–701,46, в отношении псевдомонад – 421,7–1109,17 и 483,06–1270,57 мкг/мл соответственно. Достоверность различий между полученными значениями МИК₅₀ с той же вероятностью установлена для эфирных масел растений обоих видов в отношении стафилококков.

МИК тимола для двух штаммов стафилококка составили 1000 и четырех – 500 мкг/мл и носили бактериостатический характер. МИК тимола (500–1000 мкг/мл) для всех штаммов грамотрицательных бактерий оказались бактерицидными.

Контрольные посевы в разведения этанола показали бактерицидное действие в минимальных концентрациях, превышающих таковые в опытных разведениях спиртового раствора тимола, и составили 50000–100000 мкг/мл. Таким образом, этанол в данных концентрациях не оказывал влияния на антимикробную активность тимола.

По результатам оценки относительной респираторной активности опытных штаммов показано, что концентрации эфирных масел *Т. serpyllum* и *T. marschallianus* 125–1000 мкг/мл подавляют респираторную активность культур стафилококков на 44–66 % и 22–58 % (в зависимости от штамма) соответственно (рисунки 1, 2). В отношении грамотрицательных бактерий значимое снижение респираторной активности установлено для двух штаммов: стандартного штамма *E. coli* на 9–29 % и 22–40 %,

штамма *P. aeruginosa* 7728 на 38–51 % и 48–50 % соответственно. При сравнительной оценке антиреспираторной активности масел обоих видов установлено существенное преобладание подавляющего действия у эфирного масла *T. serpyllum* в отношении стандартного штамма стафилококка. Колебания показателей относительной респираторной активности обусловлены воздействием опытных концентраций на культуру в стационарной фазе роста, то есть на высокое количество микроорганизмов.

Представленные результаты свидетельствуют о наличии антибактериальной активности у эфирных масел *T. serpyllum* и *T. marschallianus* в отношении стандартных и клинических штаммов *S. aureus, E. coli* и *P. aeruginosa*, в том числе за счет подавления процессов клеточного дыхания.

Полученные результаты позволяют сделать вывод, что эфирные масла тимьяна ползучего и тимьяна Маршалла, согласно значениям МИК, не уступают по антимикробной активности химически чистому тимолу, принимая во внимание достаточно низкую растворимость эфирных масел в воде и необходимость создания стабилизированных масляных эмульсий для преодоления этого недостатка [4, 5]. Химический состав эфирных масел тимьянов разных видов по основным компонентам примерно одинаков, что может послужить объяснением для сопоставимых с полученными нами значениям МИК, установленных другими авторами: МИК эфирного масла *Thymus* zygis для уропатогенных штаммов E. coli составляет от 190 до 780 при бактерицидных показателях от 1560 до 6250 мкг/мл [8], бактерицидная МИК эфирного масла Thymus capitatus для стандартных штаммов P. aeruginosa, S. aureus, E. coli достигает 730-2940 мкг/мл [9].

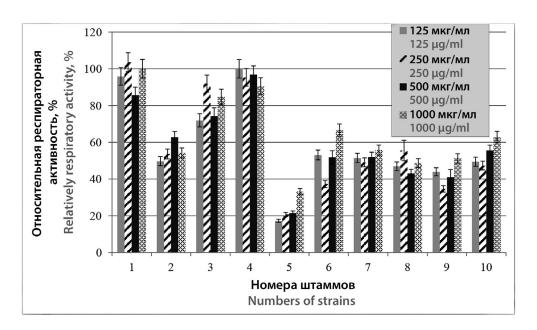


Рисунок 1. Относительная респираторная активность штаммов:

1 – P. aeruginosa ATCC 27835; 2 – P. aeruginosa 7728; 3 – E. coli ATCC 25922; 4 – E. coli 3; 5 – S. aureus 209P; 6 – S. aureus 2963; 7 – S. aureus 3473; 8 – S. aureus 3282; 9 – S. aureus 3239; 10 – S. aureus 2977 под воздействием эфирного масла Т. serpyllum

Figure 1. Relatively respiratory activity of the strains:

1 – P. aeruginosa ATCC 27835; 2 – P. aeruginosa 7728; 3 – E. coli ATCC 25922; 4 – E. coli 3; 5 – S. aureus 209P; 6 – S. aureus 2963; 7 – S. aureus 3473; 8 – S. aureus 3282; 9 – S. aureus 3239; 10 – S. aureus 2977 under influence of T. serpyllum essential oil

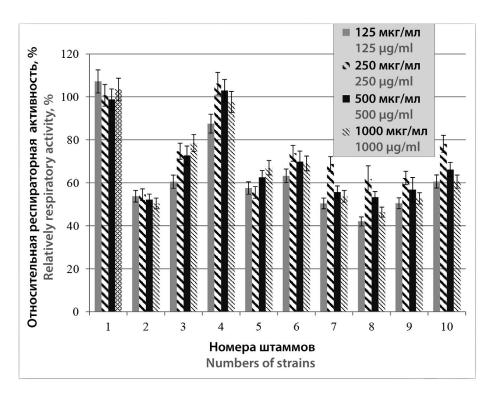


Рисунок 2. Относительная респираторная активность штаммов:

1 – P. aeruginosa ATCC 27835; 2 – P. aeruginosa 7728; 3 – E. coli ATCC 25922; 4 – E. coli 3; 5 – S. aureus 209P; 6 – S. aureus 2963; 7 – S. aureus 3473; 8 – S. aureus 3282; 9 – S. aureus 3239; 10 – S. aureus 2977 под воздействием эфирного масла Т. marschallianus

Figure 2. Relatively respiratory activity of the strains:

1 – *P. aeruginosa* ATCC 27835; 2 – *P. aeruginosa* 7728; 3 – *E. coli* ATCC 25922; 4 – *E. coli* 3; 5 – *S. aureus* 209P; 6 – *S. aureus* 2963; 7 – *S. aureus* 3473; 8 – *S. aureus* 3282; 9 – *S. aureus* 3239; 10 – *S. aureus* 2977 under influence of *T. marschallianus* essential oil

По данным статистической обработки МИК и МИК₅₀ эфирное масло тимьяна Маршалла согласно полученным значениям обладает большей антибактериальной активностью по сравнению с эфирным маслом тимьяна ползучего в отношении опытных штаммов стафилококков.

С точки зрения химического строения эфирных масел, по суммарной массовой доли веществ, не относящихся к тимолу и его изомерам, но с предполагаемой или доказанной антимикробной активностью [9, 10], опытные эфирные масла практически не отличаются между собой и процент данных соединений составляет 16,09 % для Т. marschallianus и 15,73 % для *T. serpyllum*. Однако дополнительно среди указанных веществ (эвкалиптола, у-терпинена и кариофиллена) в эфирном масле T. marschallianus по сравнению с *T. serpyllum* присутствуют анетол (0,3 %) и эндоборнеол (5,25 %). Последний является монотерпеновым спиртом, то есть содержит гидроксогруппы, как и тимол, которые усиливают повреждающее воздействие несущих их молекул на ферменты клетки [10, 17, 18]. Другие же указанные вещества эти группы не содержат, являясь в большинстве своем циклическими соединениями с развернутой пространственной структурой.

В целом пока во многом остается не изученным тот факт, как работают все компоненты эфирных масел в совокупности: потенцируют, ингибируют или не влияют друг на друга, что является предметом дальнейшего изучения.

В отношении грамотрицательных бактерий отсутствие различий в значении МИК эфирных масел обусловлено липополисахаридным барьером клеточной стенки [19], ослабляющим взаимодействие липофильных компонентов с наружной мембраной. По угнетению респираторной активности опытные эфирные масла не проявили существенных различий между собой в отношении большинства штаммов в виду воздействия на высокую концентрацию микроорганизмов, но показали, что данный механизм действия является одним из важных в воздействии уже на сформировавшуюся популяцию бактерий.

ЗАКЛЮЧЕНИЕ

Таким образом, проведенные исследования доказывают антибактериальную эффективность эфирных масел тимьяна *T. marschallianus* и *T. serpyllum* на примере стандартных штаммов условно-патогенных грамположительных и грамотрицательных бактерий и делают их перспективными антимикробными агентами для дальнейших исследований, посвященным возможностям их практического применения.

ЛИТЕРАТУРА

- Сентябрев Н. Н., Караулов В. В., Кайдалин В. С., Камчатников А. Г. Эфирные масла в спортивной практике. Волгоград: ВГАФК; 2009. 138 с.
- 2. Шавловская О. А. Спектр применения эфирных масел в современной медицине на примере бальзама Золотая звезда. *Лечащий врач*. 2016;10:e1–16.

- Тернинко И. И., Лёзина А. В., Снигирева Н. А., Романова М. А. К вопросу о применении фитотерапии в лечении онкологических заболеваний (обзор). В: Международной конференции, посвященной 60-летию фармацевтического факультета учреждения образования «Витебский государственный ордена Дружбы народов медицинский университет» «Современные достижения фармацевтической науки и практики». 31 октября 2019 года. Витебск; 2019. С. 115–117.
- Acs K., Balazs V. L., Kocsis B., Bencsik T., Boszormenyi A., Horvath G. Antibacterial activity evaluation of selected essential oils in liquid and vapor phase on respiratory tract pathogens. *BMC Complementary and Alternative Medicine*. 2018;18(1):227. DOI: 10.1186/s12906-018-2291-9.
- Shin J., Na K., Shin S., Seo S.-M., Youn H.-J., Park I.-K., Hyun J. Biological activity of *Thyme white* essential oil stabilized by cellulose nanocrystals. *Biomolecules*. 2019;9(12):799. DOI: 10.3390/biom9120799.
- Jafri H., Ahmad I. Thymus vulgaris essential oil and thymol inhibit biofilms and interact synergistically with antifungal drugs against drug resistant strains of Candida albicans and Candida tropicalis. Journal de Mycologie Médicale. 2020;30(1):100911. DOI: 10.1016/j.mycmed.2019.100911.
- Sakkas H., Papadopoulou C. Antimicrobial activity of basil, oregano, and thyme essential oils. *Journal of Microbiology and Biotechnology*. 2017;27(3):429–438. DOI: 10.4014/jmb.1608.08024.
- 8. Lagha R., Ben Abdallah F., Al-Sarhan B., Al-Sodany Y. Antibacterial and biofilm inhibitory activity of medicinal plant essential oils against *Escherichia coli* isolated from UTI patients. *Molecules*. 2019: 24(6):1161. DOI: 10.3390/molecules24061161.
- Moumni S., Elaissi A., Trabelsi A., Merghni A., Chraief I., Jelassi B., Chemli R., Ferchichi S. Correlation between chemical composition and antibacterial activity of some *Lamiaceae* species essential oils from Tunisia. *BMC Complementary Medicine and Therapies*. 2020;20(1):103. DOI: 10.1186/s12906-020-02888-6.
- Kowalczyk A., Przychodna M., Sopata S., Bodalska A., Fecka I. Thymol and thyme essential oil – new insights into selected therapeutic applications. *Molecules*. 2020;25(18):4125. DOI: 10.3390/molecules25184125.
- 11. Гладкова В. Н., Меницкий Ю. Л. Флора европейской части СССР. В 11 т. Т. 3. Род Тимьян *Thymus* L. Ленинград: Наука; 1978.
- Государственная фармакопея Российской Федерации. XIV изд. В 4 т. М.: Министерство здравоохранения Российской Федерации. 2018.
- Коренская И. М., Измалкова И. Е., Сливкин А. И., Фалалеев А. В., Мальцева А. А. Фармакогностическое и хромато-масс-спектрометрическое исследование надземных частей тимьяна марокканского и тимьяна Маршалла. Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация. 2016;(4):137–141.
- Engel J. B., Heckler C., Tondo E. C., Daroit D. J., da Silva Malheirosa P. Antimicrobial activity of free and liposome-encapsulated thymol and carvacrol against Salmonella and Staphylococcus aureus adhered to stainless steel. International Journal of Food Microbiology. 2017;252:18–23. DOI: 10.1016/j.ijfoodmicro.2017.04.003.
- Wang X., Shen Y., Thakur K., Han J., Zhang J.-G., Hu F., Wei Z.-J. Antibacterial activity and mechanism of ginger essential oil against *Escherichia coli* and *Staphylococcus aureus*. *Molecules*. 2020;25(17):3955. DOI: 10.3390/molecules25173955.
- Rua J., del Valle P., de Arriaga D., Fernandez-Alvarez L., Garcia-Armesto M. R. Combination of carvacrol and thymol: antimicrobial activity against *Staphylococcus aureus* and antioxidant activity. *Foodborne Pathogens and Disease*. 2019;16(9):622–629. DOI: 10.1089/fpd.2018.2594.
- Guimaraes A. C., Meireles L. M., Lemos M. F., Guimaraes M. C. C., Endringer D. C., Fronza M., Scherer R. Antibacterial activity of terpenes and terpenoids present in essential oils. *Molecules*. 2019;24(13):2471. DOI: 10.3390/molecules24132471.
- Winska K., Maczka W., Lyczko J., Grabarczyk M., Czubaszek A., Szumny A. Essential oils as antimicrobial agents – myth or real alternative. *Molecules*. 2019;24(11):2130. DOI: 10.3390/molecules24112130.
- Valdivieso-Ugarte M., Gomez-Llorente C., Plaza-Diaz J., Gil A. Antimicrobial, antioxidant, and immunomodulatory properties of essential oils: a systematic review. *Nutrients*. 2019;11(11):2786. DOI: 10.3390/nu11112786.

REFERENCES

- Sentjabrev N. N., Karaulov V. V., Kajdalin V. S., Kamchatnikov A. G. Essential oils in sports practice. Volgograd: VGAFK; 2009. 138 p. (In Russ.)
- Shavlovskaja O. A. The range of essential oils application in modern medicine on the example of Golden Star balsam. *Lechashhij vrach*. 2016:10:e1–16. (In Russ.)
- Terninko I. I., Ljozina A. V., Snigireva N. A., Romanova M. A. On the issue of phytotherapy in the treatment of oncological diseases (overview). In: International conference dedicated to the 60th anniversary of the pharmaceutical faculty of the educational institution "Vitebsk State Order of Peoples' Friendship Medical University" "Modern achievements of pharmaceutical science and practice." October 31, 2019. Vitebsk; 2019. P. 115–117. (In Russ.)
- Acs K., Balazs V. L., Kocsis B., Bencsik T., Boszormenyi A., Horvath G. Antibacterial activity evaluation of selected essential oils in liquid and vapor phase on respiratory tract pathogens. *BMC Complementary and Alternative Medicine*. 2018;18(1):227. DOI: 10.1186/s12906-018-2291-9.
- Shin J., Na K., Shin S., Seo S.-M., Youn H.-J., Park I.-K., Hyun J. Biological activity of *Thyme white* essential oil stabilized by cellulose nanocrystals. *Biomolecules*. 2019;9(12):799. DOI: 10.3390/biom9120799.
- Jafri H., Ahmad I. Thymus vulgaris essential oil and thymol inhibit biofilms and interact synergistically with antifungal drugs against drug resistant strains of Candida albicans and Candida tropicalis. Journal de Mycologie Médicale. 2020;30(1):100911. DOI: 10.1016/j.mycmed.2019.100911.
- Sakkas H., Papadopoulou C. Antimicrobial activity of basil, oregano, and thyme essential oils. *Journal of Microbiology and Biotechnolo*gy. 2017;27(3):429–438. DOI: 10.4014/jmb.1608.08024.
- Lagha R., Ben Abdallah F., Al-Sarhan B., Al-Sodany Y. Antibacterial and biofilm inhibitory activity of medicinal plant essential oils against *Escherichia coli* isolated from UTI patients. *Molecules*. 2019; 24(6):1161. DOI: 10.3390/molecules24061161.
- Moumni S., Elaissi A., Trabelsi A., Merghni A., Chraief I., Jelassi B., Chemli R., Ferchichi S. Correlation between chemical composition and antibacterial activity of some *Lamiaceae* species essential oils from Tunisia. *BMC Complementary Medicine and Therapies*. 2020;20(1):103. DOI: 10.1186/s12906-020-02888-6.

- Kowalczyk A., Przychodna M., Sopata S., Bodalska A., Fecka I. Thymol and thyme essential oil – new insights into selected therapeutic applications. *Molecules*. 2020;25(18):4125. DOI: 10.3390/molecules25184125.
- 11. Gladkova V. N., Menickiy Yu. L. Flora of the European parts of the USSR. In 11 vols. V. 3. The genus Thymus *Thymus* L. Leningrad: Nauka; 1978. (In Russ.)
- State Pharmacopoeia of the Russian Federation. XIV ed. In 4 volumes. Moscow: Ministry of Health of the Russian Federation. 2018. (In Russ.)
- Korenskaya I. M., Izmalkova I. E., Slivkin A. I., Falaleev A. V., Maltzeva A. A. Pharmacognostic and chromato-mass spectrometric study of the aerial parts of the moroccan herb of thyme and marshall herb of thyme. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Khimiya. Biologiya. Farmatsiya. 2016;(4):137–141. (In Russ.)
- Engel J. B., Heckler C., Tondo E. C., Daroit D. J., da Silva Malheirosa P. Antimicrobial activity of free and liposome-encapsulated thymol and carvacrol against Salmonella and Staphylococcus aureus adhered to stainless steel. International Journal of Food Microbiology. 2017;252:18–23. DOI: 10.1016/j.ijfoodmicro.2017.04.003.
- Wang X., Shen Y., Thakur K., Han J., Zhang J.-G., Hu F., Wei Z.-J. Antibacterial activity and mechanism of ginger essential oil against *Escherichia coli* and *Staphylococcus aureus*. *Molecules*. 2020;25(17):3955. DOI: 10.3390/molecules25173955.
- Rua J., del Valle P., de Arriaga D., Fernandez-Alvarez L., Garcia-Armesto M. R. Combination of carvacrol and thymol: antimicrobial activity against *Staphylococcus aureus* and antioxidant activity. *Foodborne Pathogens and Disease*. 2019;16(9):622–629. DOI: 10.1089/fpd.2018.2594.
- Guimaraes A. C., Meireles L. M., Lemos M. F., Guimaraes M. C. C., Endringer D. C., Fronza M., Scherer R. Antibacterial activity of terpenes and terpenoids present in essential oils. *Molecules*. 2019;24(13):2471. DOI: 10.3390/molecules24132471.
- Winska K., Maczka W., Lyczko J., Grabarczyk M., Czubaszek A., Szumny A. Essential oils as antimicrobial agents – myth or real alternative. *Molecules*. 2019;24(11):2130. DOI: 10.3390/molecules24112130.
- Valdivieso-Ugarte M., Gomez-Llorente C., Plaza-Diaz J., Gil A. Antimicrobial, antioxidant, and immunomodulatory properties of essential oils: a systematic review. *Nutrients*. 2019;11(11):2786. DOI: 10.3390/nu11112786.