УДК 615.453.6, 615.07:62-52

1 – ГБОУ ВПО Первый МГМУ им. И.М.Сеченова Минздрава России, 119991, Россия, г. Москва, ул. Трубецкая, 8.

2 – ФГБУН НЦБМТ ФМБА России, 143442, России, Московская обл., Красногорский район, п/о Отрадное, пос. Светлые горы, владение 1

1 – I.M. Sechenov First Moscow State Medical University, 8, Trubetskaya str., Moscow, 119991, Russia

2 – FSBIS SCBMT FMBA, 1, pos. Svetlye gory, p/o Otradnoe, Krasnogorskiy r-n, Moscow region, 143442, Russia

* адресат для переписки: E-mail: igorshohin@yandex.ru

ОЦЕНКА ВЛИЯНИЯ АВТОМАТИЗАЦИИ НА ВАРИАБЕЛЬНОСТЬ РЕЗУЛЬТАТОВ ТЕСТА «РАСТВОРЕНИЕ» НА ПРИМЕРЕ ЛЕКАРСТВЕННОГО ПРЕПАРАТА «БЕТАСЕРК, ТАБЛЕТКИ 16 МГ»

Н.С. Дубовик¹, И.Е. Шохин²*, Л.А. Павлова¹

Резюме. В статье приведен анализ результатов теста «Растворение», выполненного на оборудовании с ручным и автоматическим отбором проб, для препарата «Бетасерк, таблетки 16 мг». Была проведена статистическая обработка с использованием двухвыборочного F-теста для дисперсии и t-теста для независимых выборок с использованием критерия Стьюдента. Показана сопоставимость результатов теста, выполненного на ручном и автоматическом оборудовании.

Ключевые слова: тест «Растворение», таблетки, автоматизация.

EVALUATION OF THE AUTOMATION INFLUENCE ON THE DISSOLUTION VARIABILITY RESULTS FOR BETASERC TABLETS

N.S. Dubovik¹, I.E. Shohin²*, L.A. Pavlova¹

Abstract. The article describes the dissolution test results for the Betaserc (betahistine) IR tablets using the equipment with manual sampling and automatic sampling. The results were compared using F-test and Student's t-test and considered to be comparable for manual and automatic dissolution equipment.

Keywords: dissolution test; tablets, automation.

ВВЕДЕНИЕ

Тест «Растворение» является незаменимым инструментом для разработки и анализа лекарственных препаратов (ЛП) в твердых дозированных лекарственных формах, при помощи которого можно осуществлять подбор оптимального состава ЛП, оценивать поведение действующего вещества при проведении сравнительных исследований in vitro, контролировать изменения в процессе производства, определять качество готового препарата. Тест «Растворение» применяется на протяжении всего жизненного цикла лекарственного средства: как на различных этапах фармацевтической разработки, так и при пострегистрационных изменениях [1, 2].

Выполнение теста «Растворение» на современном автоматическом оборудовании, которое, по данным зарубежной литературы, является необходимым для выполнения высококачественных исследований в соответствии с GMP, позволит существенно сократить время и затраты. Однако для того чтобы выполнять исследования на автоматическом оборудовании, необходимо проводить перенос методик теста с ранее используемого ручного оборудования с подтверждением того, что автоматизиро-

ванный процесс не повлияет на вариабельность результатов высвобождения действующего вещества из ЛП [3–5].

Целью данной работы является оценка влияния автоматизации на вариабельность высвобождения действующих веществ *in vitro* из ЛП на примере препарата «Бетасерк, таблетки 16 мг».

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Объект исследования:

Для исследования нами был выбран лекарственный препарат (ЛП) «Бетасерк, таблетки 16 мг», приобретенный в аптечной сети г. Москвы.

На основании библиотеки данных отдела разработки лекарственных средств НИИ фармации ГБОУ ВПО Первого МГМУ им. И.М. Сеченова и рекомендаций общей фармакопейной статьи 1092 Фармакопеи США «Разработка и валидация теста «Растворение», где указано, что величина относительного стандартного отклонения не должна превышать 20% для первой временной точки и 10% для последующих временных точек, ЛП «Бетасерк» был отнесен к низковариабельным препаратам [6].

Оборудование:

- Прибор для проведения теста «Растворение» Agilent Technologies 708-DS Dissolution Apparatus, США (система с ручным отбором проб).
- Прибор для проведения теста «Растворение» ERWEKA GmbH HADs (Half-automated dissolution system), Германия (система с автоматическим отбором проб).

Agilent Technologies 708-DS Dissolution Apparatus

- УФ-спектрофотометр Agilent Technologies Cary 60 UV-Vis, США.
- УФ-спектрофотометр Agilent Technologies 8454, США (интегрирован в систему HADs для проточного УФ-спектрофотометрического определения).
- BЭЖХ Agilent Technologies 1200 Series с диодноматричным детектором, США.
- Весы электронные OHAUS Discovery DV 214C, Швейцария.
- Дозатор пипеточный одноканальный с переменным объемом «Ленпипет Блэк» ДПОП-1-500-5000, Россия.
- Аппарат для фильтрации и дегазации растворов Merck Millipore (Германия), вакуумный насос XF54 230 50
- Портативный pH-метр 728 pH lab, Metrohm AG, Швейцария.
- Магнитная мешалка MSH-300i с подогревом, 100–1250 об/мин, платформа 160 мм, Biosan, Латвия.

Все используемые в работе средства измерения зарегистрированы в Государственном реестре средств измерений [7] и имели действительные свидетельства о поверке.

Полуавтоматическая система растворения ERWEKA HADs (Half-Automated Dissolution System)

УФ-спектрофотометр Agilent Technologies 8454 и УФ-спектрофотометр Agilent Technologies Cary 60 UV-Vis

ВЭЖХ Agilent Technologies 1200 Series с диодноматричным детектором

Приготовление среды растворения

Фосфатный буферный раствор рН 6,8 готовили следующим образом: 11,790 г натрия фосфорнокислого 2-замещенного 12-водного и 4,609 г калия фосфата 2-замещенного вносили в мерный стакан вместимостью 1000 мл, прибавляли 400 мл воды, перемешивали с использованием магнитной мешалки в течение приблизительно 30 мин до полного растворения, затем переносили в мерную колбу вместимостью 1000 мл, доводили объем раствора до метки водой и тщательно перемешивали. Измеряли рН раствора на рН-метре, при необходимости доводили рН до 6,8 раствором фосфорной кислоты или 0,1 М раствором натрия гидроксида.

Приготовление стандартного раствора бетагистина дигидрохлорида

Около 26,66 мг (точная навеска) стандартного образца бетагистина дигидрохлорида помещали в мерную колбу вместимостью 100 мл и прибавляли около 70 мл среды растворения, перемешивали до полного растворения, доводили объем раствора до метки средой раствора переносили в мерную колбу вместимостью 100 мл, доводили объем раствора до метки средой растворения, перемешивали.

Методика проведения теста «Растворение» на оборудовании с ручным отбором проб

Тест «Растворение» проводили согласно ОФС 42-0003-04 «Растворение» [8] на аппарате «Вращающаяся корзинка» при скорости вращения 50 об/мин при температуре 37±0,5 °С. Среда растворения – буферный раствор рН 6,8. Объем среды растворения – 900 мл. Временные точки отбора проб: 10 мин, 15 мин, 20 мин, 30 мин, 45 мин.

В каждый из 6 сосудов для растворения с 1000 мл воды, предварительно термостатированными при 37±0,5 °С, помещали по 1 таблетке исследуемого лекарственного средства. Спустя указанные промежутки времени проводили отбор 5 мл среды (для получения необходимого количества объема пробы, достаточного для анализа методом УФ-спектрофотометрии в кварцевой кювете с шириной слоя 10 мм), которые незамедлительно восполняли таким же объемом среды растворения. Отобранные пробы фильтровали через мембранные фильтры Agilent Captiva с диаметром пор 0,45 мкм, отбрасывая первые порции фильтрата (испытуемый раствор).

Методика проведения теста «Растворение» на оборудовании с автоматическим отбором проб

Тест «Растворение» проводили согласно ОФС 42-0003-04 «Растворение» [8] на аппарате «Вращающаяся корзинка» при скорости вращения 50 об/мин при температуре 37±0,5 °С. Среда растворения – буферный раствор рН 6,8. Объем среды растворения – 900 мл. Временные точки отбора проб: 10 мин, 15 мин, 20 мин, 30 мин, 45 мин.

В каждый из 6 сосудов для растворения с 1000 мл воды, предварительно термостатированными при 37±0,5 °С, помещали по 1 таблетке исследуемого лекарственного средства. Спустя указанные промежутки времени автоматически отбирались пробы в размере 1,0 мл. Восполнение объема среды также производилось автоматически.

Методика количественного определения

Количественное определение проводили методом УФ-спектрофотометрии. Измеряли оптическую плотность испытуемого и стандартного растворов на спектрофотометре в кварцевой кювете с толщиной слоя 10 мм в области максимального поглощения при длине волны 260 нм, используя в качестве раствора сравнения буферный раствор рН 6,8. В случае полуавтоматической станции количественное определение проводилось методом проточной УФ-спектрофотометрии.

Количество бетагистина дигидрохлорида (*Q%*), перешедшего в раствор, от заявленного количества рассчитывали по формуле:

$$Q\% = \frac{A \cdot a_0 \cdot 10 \cdot 900 \cdot P \cdot 100}{A_0 \cdot 100 \cdot 100 \cdot L \cdot 100},$$

где: A — оптическая плотность испытуемого раствора; A_0 — оптическая плотность стандартного раствора; a_0 — навеска стандартного образца бетагистина дигидрохлорида, мг; L — содержание бетагистина дигидрохлорида в одной таблетке, мг; P — содержание бетагистина дигидрохлорида в стандартном образце, %; 900 — объем среды растворения, мл; 100 — объемы мерных колб, взятых для приготовления испытуемых и стандартного растворов, мл.

Статистическую обработку результатов эксперимента осуществляли с использованием пакета Microsoft Office Excel 2007 путем расчета среднего значения количества растворившейся субстанции и относительного стандартного отклонения (RSD, %).

Статистическая обработка результатов эксперимента

Статистическую обработку результатов эксперимента осуществляли с использованием пакета Microsoft Office Excel 2007 путем расчета среднего значения количества растворившейся субстанции и относительного стандартного отклонения (RSD, %).

Для оценки влияния автоматизации на проведение теста «Растворение» проводили статистическую обработку, используя двухвыборочный F-тест для дисперсии и t-тест для независимых выборок с использованием критерия Стьюдента. Расчеты для двухвыборочного F-теста для дисперсии проводили с помощью программы Excel. Для дисперсионного анализа была принята нулевая гипотеза H₀: данные теста «Растворение», выполненного на ручной системе, статистически тождественны данным теста, выполненного на автоматической системе. Расчеты для t-теста проводились с помощью автоматического расчета t-критерия Стьюдента на сайте http://www.psychol-ok.ru.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Индивидуальные и усредненные значения количества бетагистина дигидрохлорида, высвободившегося в раствор из ЛП «Бетасерк, таблетки 16 мг» при проведении теста «Растворение» на оборудовании с ручным отбором проб, приведены в таблице 1. Усредненный профиль растворения исследуемого ЛП представлен на рисунке 1.

Индивидуальные и усредненные значения количества бетагистина дигидрохлорида, высвободившегося из исследуемого ЛП при проведении теста «Растворение» на оборудовании с автоматическим отбором проб, приведены в таблице 2. Усредненный

профиль растворения исследуемого ЛП представлен на рисунке 2.

Таблица 1.

Индивидуальные и усредненные значения бетагистина дигидрохлорида, высвободившегося в раствор из ЛП «Бетасерк, таблетки 16 мг»

№ пробы	10 мин	15 мин	20 мин	30 мин	45 мин
1	92,14	94,50	93,83	93,83	93,83
2	95,51	98,55	98,89	97,20	97,54
3	88,76	92,81	94,50	95,18	95,85
4	92,14	94,16	93,15	94,16	94,50
5	95,85	99,23	99,23	97,88	98,21
6	89,78	93,49	94,84	96,19	95,85
Сред- нее, %	92,36	95,46	95,74	95,74	95,96
RSD, %	3,13	2,86	2,75	1,71	1,76

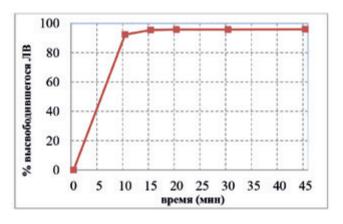


Рисунок 1. Усредненный профиль растворения ЛП «Бетасерк, таблетки 16 мг»

Таблица 2.

Индивидуальные и усредненные значения бетагистина дигидрохлорида, высвободившегося в раствор из ЛП «Бетасерк, таблетки 16 мг»

№ пробы	10 мин	15 мин	20 мин	30 мин	45 мин
1	96,33	92,99	93,90	97,55	101,20
2	103,02	98,16	96,03	96,94	99,07
3	88,74	99,98	93,30	97,55	104,96
4	90,56	94,51	96,64	104,24	97,85
5	82,96	94,21	91,17	96,64	97,25
6	86,61	94,81	89,34	100,28	100,59
Сред- нее, %	91,37	95,78	93,40	98,87	100,15
RSD, %	7,91	2,81	2,99	2,97	2,80

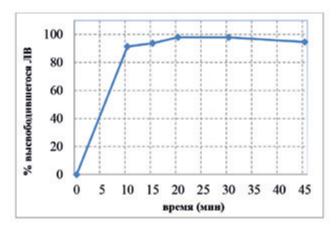


Рисунок 2. Усредненный профиль растворения ЛП «Бетасерк, таблетки 16 мг»

Значения, полученные при проведении статистической обработки результатов теста «Растворение», выполненного на оборудовании с ручным и автоматическим отбором проб, представлены в таблице 3.

Таблица 3.

Значения, полученные при проведении статистической обработки с использованием двухвыборочного F-теста для дисперсии и t-теста (критерий Стьюдента) для ЛП «Бетасерк, таблетки 16 мг»

Временная точка, мин	F _{крит}	F _{эмп}	$t_{ m kpит}$	<i>t</i> _{эмп}
10	5,05	6,24	2,23 (для Р≤0,05), 3,17 (для Р≤0,01)	0,3
15	5,05	1,88	2,23 (для <i>Р</i> ≤0,05), 3,17 (для <i>Р</i> ≤0,01)	0,9
20	5,05	8,11	2,23 (для <i>Р</i> ≤0,05), 3,17 (для <i>Р</i> ≤0,01)	0,7
30	5,05	12,8	2,23 (для <i>Р</i> ≤0,05), 3,17 (для <i>Р</i> ≤0,01)	0,9
45	5,05	12,66	2,23 (для <i>Р</i> ≤0,05), 3,17 (для <i>Р</i> ≤0,01)	0,5

На всех временных точках, за исключением второй, $F_{\rm крит}{<}F_{\rm эмп},\ t_{\rm эмп}$ на всех точках находится в зоне незначимости.

По результатам статистической обработки данных исследования теста «Растворение», проведенного на ручной и автоматической системах, для препарата «Бетасерк, таблетки 16 мг» с помощью двухвыборочного F-теста для дисперсии и t-теста для независимых выборок с использованием критерия Стьюдента установ-

лено, что данные, полученные при проведении теста на ручной системе, и данные, полученные при проведении теста на автоматической системе, статистически тождественны по среднему значению и дисперсии (на уровне значимости α =0,05).

ЗАКЛЮЧЕНИЕ

В результате проведения теста «Растворения» на оборудовании с ручным и автоматическим отбором проб нами была подтверждена вариабельность высвобождения действующего вещества из ЛП «Бетасерк, таблетки 16 мг».

По результатам подсчетов установлено, что данные, полученные при проведении теста на ручной системе, и данные, полученные при проведении теста на автоматической системе, статистически тождественны по среднему значению и дисперсии (на уровне значимости α=0,05), тем самым доказывая, что автоматизация теста «Растворение» не влияет на вариабельность результатов испытания.

ЛИТЕРАТУРА

- 1. Z. Hua, X.Yu. Lawrence. Dissolution testing for solid oral drug products: theoretical considerations // Amer. Pharm. Rev. 2010. № 6. P. 1–4.
- 2. И.Е. Смехова, Ю.М. Перова, И.А. Кондратьева, А.Н. Родыгина, Н.Н. Турецкова. Тест «Растворение» и современные подходы к оценке эквивалентности лекарственных препаратов // Разработка и регистрация лекарственных средств. 2013. № 1(2). С. 50–60.
- 3. Возможности фармацевтическо-технологического оборудования ERWEKA // Разработка и регистрация лекарственных средств. 2013. Спецвыпуск «Аналитика Экспо». 2013. С. 6–10.
- 4. A. larriccio, A. Kassis, T. Patel. Increasing the Efficiency of the Dissolution Laboratory through Automation // The Review of American Pharmaceutical Business and Technology. 2011. P. 15–23.
- 5. J. Kretz, K.Wong-Moon. Evaluation of Automation to Increase Efficiency in the Dissolution Lab // Dissolution Technologies. 2013. V. 20. № 2. P. 33–37.
- 6. USP 33 NF 28. Monograph 1092 «The Dissolution Procedure: Development and Validation».
- 7. Государственный реестр средств измерений. URL: http://www.fundmetrology.ru/10_tipy_si/list.aspx (дата обращения 22.09.2014).
- 8. Государственный стандарт качества лекарственного средства. ОФС 42-0003-04 «Растворение». М. 2004.