УДК 615.454.1

ГЕЛИ ДЛЯ ПРИЕМА ВНУТРЬ. ЧАСТЬ 2. ВСПОМОГАТЕЛЬНЫЕ ВЕЩЕСТВА (ОБЗОР)

Е.Ю. Загорулько¹*, А.А. Теслев¹

Резюме. В статье представлена характеристика вспомогательных веществ, входящих в состав гелей для приема внутрь. Описаны свойства основных гелеобразователей, подсластителей и консервантов. Проанализирован состав лекарственных препаратов и биологически активных добавок к пище в форме гелей для приема внутрь, представленных на российском рынке.

Ключевые слова: гель для приема внутрь, вспомогательные вещества, гелеобразователь, подсластитель, консервант, состав.

GELS FOR ORAL ADMINISTRATION. PART 2. EXCIPIENTS (REVIEW)

E.Y. Zagorulko^{1*}, A.A. Teslev¹

Abstract. The characteristics of the excipients as components of gels for oral administration have been considered in the article. The properties of gelatinizing, sweetening and preservation agents have been described. The compositions of the commercially available on the Russian market medical products and dietary supplements in the form of gels for oral administration have been analyzed.

Keywords: gel for oral administration, excipients, gelatinizing agent, sweetening agent, preservation agent, composition.

- 1 ФГБОУ ВО «Санкт-Петербургская государственная химико-фармацевтическая академия» Министерства здравоохранения Российской Федерации, 197376, Россия, г. Санкт-Петербург, ул. Проф. Попова, д. 14
- 1 St. Petersburg State Chemical Pharmaceutical Academy of the Ministry of Healthcare, 14, Prof. Popov str., Saint-Petersburg, 197376, Russia

* адресат для переписки: E-mail: elena.zagorulko@pharminnotech.com Тел.: +7 (921) 793 23 76

ВВЕДЕНИЕ

Проведенный аналитический обзор данных литературы позволил выявить основные группы вспомогательных веществ, используемых при производстве гелей для приема внутрь: гелеобразователи; растворители; консерванты; регуляторы рН; корригенты вкуса. В состав данной формы могут входить также вещества, создающие условия для гелеобразования, антиоксиданты, корригенты цвета, эмульгаторы (в случае эмульгелей) и др. [1–6].

Целью работы является характеристика основных групп вспомогательных веществ, входящих в состав гелей для приема внутрь.

ГЕЛЕОБРАЗОВАТЕЛИ

Общая характеристика

Наиболее распространенными гелеобразователями для лекарственных препаратов (ЛП) и БАД к пище в такой форме являются пектины, альгинаты, агар-агар, каррагинаны, карбоксиметилцеллюлоза (КМЦ), натрийкарбоксиметилцеллюлоза (Na-КМЦ), ксантановая и гуаровая камеди, гуммиарабик [2–5].

Эти вещества находят также широкое применение в пищевой промышленности. Их от-

носят к группе гидроколлоидов – соединений полисахаридной (или белковой) природы, добавляемых в пищевые продукты с целью придания им требуемой вязкости и консистенции, а также с целью стабилизации пищевых дисперсных систем [6–8].

Согласно литературным данным, в состав гелей для приема внутрь могут также входить полиэтиленоксид, поливиниловый спирт, модифицированный крахмал, гидроксилэтилцеллюлоза (ГЭЦ), геллановая камедь, камедь рожкового дерева, желатин, ксилоглюкан и др. [1, 8–12].

Известны экспериментальные исследования, посвященные разработке пероральных пролонгированных гелей на основе интерполимерного комплекса полиметакриловой кислоты и полиэтиленгликоля (композиционный полимерный носитель, ФГУП «НИИ полимеров», Россия), а также частично нейтрализованного сополимера метакриловой кислоты и этилакрилата Kollicoat™ МАЕ 100 Р (ВАSF, Германия) [13, 14].

Характеристика основных гелеобразователей в составе гелей для приема внутрь представлена в таблице 1, их структурные формулы приведены на рисунке 1 [6, 11, 12, 15–28].

Характеристика гелеобразователей в составе гелей для приема внутрь [6, 11, 12, 15–28]

Производители (примеры)	Agarpac (Чили), Algas Marinas (Чили), Proagar (Чили), GreenAgar (Китай), Qixiang (Китай), Fujian Putian (Китай), Indoalgas (Индоне- зия)	Andre Pectin (Китай), Herbstreith & Fox (Германия), Cargill (США), Danisco (Дания), Haisheng Pectin (Китай)	Shemberg (Филиппины), Shanghai Brilliant Gum (Китай), Danisco (Дания), CEAMSA (Испа- ния), CP Kelco (США)	CP Kelco (США), ADM (США), Danisco (Дания), Deosen Corporation Ltd. (Китай)
Характеристика	Обладает желирующими и загущающими свойствами, высокой влагоабсорбирующей способностью. Нерастворим в холодной воде, при температуре от 95–100 °C растворяется полностью. Горячий раствор является прэзрачным, при его охлаждении до 35–40 °C образуется гель. Свойства гелей на основе агар-агара зависят от вида водорослей, времени их сбора и качества подготовки сырья	Высокоэтерифицированные пектины образуют термически необратимые гели в кислой среде, низкоэтерифицированные (LM и LMA) – под действием ионов двухвалентных металлов (обычно для этих целей используют ионы кальция), их гели термообратимы. НМ-пектины стандартизуют по прочности студня, LM- и LMA-пектины — по активности реакции с ионами кальция. В зависимости от скорости и температуры начала гелеобразования НМ-пектины делят на быстро и медленно желирующие. Первые имеют более высокую степень этерификации и образуют гели при более высоких значениях рН	Каппа. Нерастворим в холодной воде; в сочетании с ионами натрия даёт термически обратимые высокопрочные гели. Йота. Образует гель средней прочности и высокой эластичности. Обладает термообратимым свойством. Применяется для разжижения гелей, суспензий. Лямба. Образует растворы высокой вязкости, обладающие свойством псевдопластичности. Подходит для создания пен, эмульсий и суспензий в условиях температурных скачков	Используется в качестве загустителя, гелеобразователя и стабилизатора. Хорошо набухает в горячей и холодной воде. Растворы ксантановой камеди стабильны при температуре $100-110^{\circ}$ С и значениях рН 2–12
Разновидности	Деление на основе жели- рующих свойств (напри- мер, агар 700, 900 и 1000)	НМ – высокоэтерифици- рованные, LM – низко- этерифицированные, LMA – низкоэтерифициро- ванные амидированные	В зависимости от степе- ней полимеризации и этерификации выделяют каррагинаны каппа, йота, лямбда	ı
Химическая природа	Смесь сложных эфиров сульфатов кальция, нат- рия галактозы и 3,6-сопо- лимеров ангидрогалак- тозы	Смесь пектовых, пектиновых кислот и их солей	Порошок от белого до Линейный полимер суль- светло-коричневого фатированной галактозы, цвета со слабым за- фрагменты которого свя- пахом	Полисахарид с пируват- ными и ацетильными функциональными груп- пами группами
Описание	Порошок от белого до кремового цвета без постороннего запаха и остаточных крася- щих веществ	Порошки без запаха от светло-кремового до коричневого цвета	Порошок от белого до светло-коричневого цвета со слабым за- пахом	Белый или серовато- белый сыпучий поро- шок без запаха и вкуса
Название	Arap-arap (получают экстракцией из водорослей родов <i>Gracilaria</i> (97%), Gelidium и Ahnfeltia)	Пектины (экстракция из плодов цитрусовых и яблок)	Каррагинан [экстракция из красных водорослей, в основном рода Fur- cellaria (<i>Furcellaria fasti-</i> <i>gata</i>)]	Ксантановая камедь (по- лучают ферментацией культуры <i>Xanthomonas</i> <i>campestris</i>)
οN Π/Π	-	7	m	4

Окончание табл.1

ēN ⊑/⊔	Название	Описание	Химическая природа	Разновидности	Характеристика	Производители (примеры)
ī	Гуаровая камедь (получают экстракцией из се- Порошок белого мян растения <i>Cyamopsis</i> цвета без запаха <i>tetraganoloba</i>)	Порошок белого цвета без запаха	Высокоэтерифицирован- ный галактозно-манноз- ный полимер	ı	Используется в качестве загустителя, стабилизатора и гора и гелеобразователя. Хорошо растворяется в (Индия), Premcem Gums (Индия), колодной воде с образованием вязких растворов Gelcrem (Италия)	Vikas (Индия), Supreme Gums (Индия), Premcem Gums (Индия), Gelcrem (Италия)
V	Альгинаты	Желтовато- белый, иногда с сероватым оттенком, волокнистый порошок, гранулы	Натриевые, калиевые соли альтиновых кислот из остатков D-маннуроновых и L-глюкуроновых кислот)	Категорию присваивают в зависимости от вязкости (например, апьгинаты натрия 300, 550 и 1000)	В воде образуют вязкие растворы или гели, применяются как загустители, стабилизаторы, эмульгаторы и гелеобразователи. При взаимодействии с ионами кальция образуют нерастворимые соли. Нерастворимы в кислой среде (при рН<3). Гели на основе альгинатов являются термически необратимыми	Danisco (Дания), Quindao Bright Moon Seaweed Group Co. (Китай)
7	7 Гуммиарабик	Белый кристаллический порошок	Смесь калиевых, кальци- евых и магниевых солей арабиновой кислоты	-	Медленно растворим в холодной воде, хорошо растворим в тёплой воде с образованием слабо- кислого раствора	CNI (Франция), Agrisales (Англия)
œ	Натрийкарбоксиметил- целлюлоза	Белый кристаллический порошок	Натриевая соль целлюлозогликолевой кислоты	ı	Растворима в горячей и холодной воде, растворе спирта этилового 50%. В водных растворах является полиэлектролитом и обладает свойствами защитных коллоидов. Гели Na-KMЦ прозрачны, без вкуса и запаха, устойчивы при хранении; рН от 6,5 до 8	Akzo Nobel (Нидерланды), СР Kelco (США)

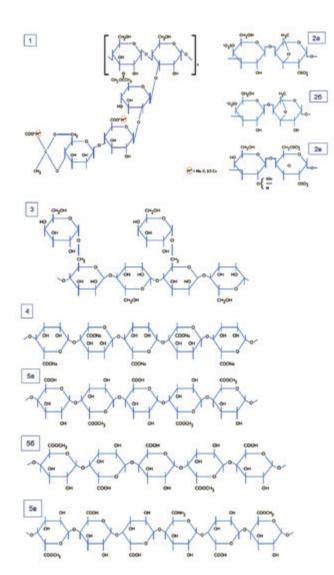


Рисунок 1. Фрагменты структурных формул гелеобразователей:

1 – ксантановая камедь; 2 – каррагинаны: а – каппа, б – йота, в – лямбда; 3 – гуаровая камедь; 4 – альгинат натрия; 5 – пектины: а – высокоэтерифицированный (НМ), б – низкоэтерифицированный (LM), в – низкоэтерифицированный амидированный (LMA) [23]

При растворении или набухании в воде молекулы гелеобразователей могут образовывать различные пространственные конфигурации. В работе Morris с соавторами предложены модели участков молекул полисахаридных гелей, связанных между собой (рисунок 2) [29].

Структурно-механические свойства гелей зависят от физико-химических свойств гелеобразователя [12, 30–32]. На рисунке 3 представлена сравнительная характеристика текстур гелей на основе различных гелеобразователей [6].

Факторы, влияющие на гелеобразование

В научной литературе описаны различные механизмы гелеобразования, в общем случае их можно разделить физически (изменение температуры) и хи-

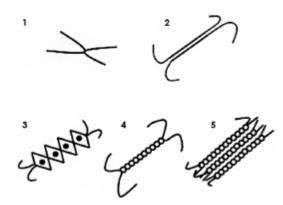


Рисунок 2. Модели участков соединения молекул полисахаридных гелей:

1 – точечная сшивка; 2 – расширенная блок-подобная зона соединения; 3 – модель «ячеек» (egg-box model) зон соединения в альгинатных и пектиновых гелях (блоки полисахаридных цепей связаны ионами кальция); 4 – зона двойного соединения; 5 – зона соединения, образованная агрегацией спиральных сегментов полисахаридных цепей [29]

Рисунок 3. Сравнение текстур гелей различных гидроколлоидов [6]

мически индуцированные (изменение pH среды, добавление ионов, ферментов и других веществ) [11, 12, 31–33].

Важнейшими характеристиками гелеобразователей, непосредственно влияющими на свойства гелей, являются **степень полимеризации** и соотношение числа функциональных групп (**степень этерификации, степень амидирования, ацетилирования** и др.).

Так, на процесс гелеобразования пектина влияет степень его этерификации: у НМ-пектинов с более высокой степенью замещения величина показателя гелеобразования выше, поэтому их относят к быстро желирующим пектинам [6, 34]. Высоко- и низкоацетилированные геллановые камеди различаются по механизмам и условиям гелеобразования [12].

Вязкость растворов полимеров во многом определяется их молекулярной массой. Так, для 1% раство-

ров гуаровой камеди соотношение структурной вязкости к скорости сдвига повышается с повышением молекулярной массы. В общем случае влияние молекулярной массы гелеобразователя на структурно-механические свойства гелей наиболее выражено в области низких концентраций [6].

Концентрация гелеобразователя наряду с его молекулярной массой является одним из важнейших факторов, определяющих вязкость геля. На рисунке 4 представлена зависимость структурной вязкости гелей на основе гуммиарабика от его концентрации.

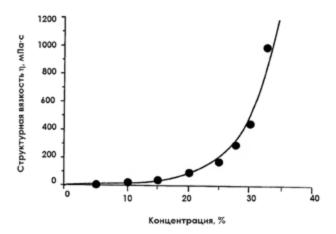


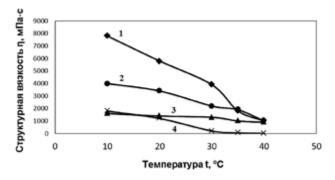
Рисунок 4. Зависимость структурной вязкости гелей на основе гуммиарабика от его концентрации [6]

В исследовании [34] проводили сравнительное изучение структурной вязкости гелей на основе пектина яблочного, пектина цитрусового, ГЭЦ и натрия альгината в концентрациях от 1% до 5% (рисунок 5).



Рисунок 5. Зависимость структурной вязкости гелей от концентрации гелеобразователя:

1 – ГЭЦ, 2 – натрия альгинат, 3 – пектин яблочный, 4 – пектин цитрусовый (20 об/мин, 20 °C) [34]


Реологические характеристики данных гелей значительно отличаются. Так, основы с ГЭЦ имеют наиболее высокие значения вязкости, а наименьшие – ос-

новы с пектинами цитрусовым и яблочным. Основы с натрия альгинатом занимают промежуточное положение. Гелевые основы с ГЭЦ и натрия альгинатом образуются от 1,5% концентрации, а гели на основе пектинов – начиная с 3,0% концентрации полимеров. При концентрации пектина 4,0–5,5% гели обладают удовлетворительными потребительскими характеристиками [34].

Изменение **температуры** инициирует процесс гелеобразования многих гидроколлоидов. Некоторые полимеры образуют гели при нагревании (агар-агар), при нагревании с последующим охлаждением (каппа-, йотта-каррагинаны, геллановая камеды) или при охлаждении (камеды рожкового дерева) [11, 12].

При этом часто температура гелеобразования определяется химическим строением конкретного гелеобразователя. Известно, что температура гелеобразования 1,5% раствора геля агара, полученного из водорослей рода Gracilaria, составляет 42–45 °C, а из водорослей рода Gracilaria, составляет 42–45 °C, а из водорослей рода Gracilaria составляет 42–45 °C, а из водорослей Gracilaria составляет 42–45 °C, а из водорос

На рисунке 6 представлены данные по изучению влияния температуры на структурную вязкость гелей для различных гелеобразователей [34].

Рисунок 6. Зависимость структурной вязкости гелевых основ от температуры:

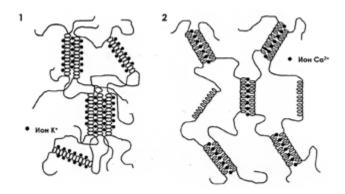
1 – ГЭЦ, 2 – натрия альгинат, 3 – пектин яблочный, 4 – пектин цитрусовый [34]

В исследовании [34] установлено, что наибольшее значение структурной вязкости при температуре 13 °С имеют гели на основе ГЭЦ. Однако при 20 °С структурная вязкость этих основ резко снижается, а при более высокой температуре (34 °С) уменьшается практически в 2 раза. Гелевая основа с натрия альгинатом в интервале от 13 °С до 34 °С практически не теряет своих вязкостных характеристик [34].

Влияние температуры на прочностные и вязкостные свойства описанных гелевых основ можно объяс-

нить изменением скорости броуновского движения компонентов дисперсной системы, влияющего на возможность межмолекулярных взаимодействий за счет вандерваальсовых сил, которые способствуют образованию коагуляционных структур [34].

Из анализа полученных зависимостей следует, что гели на основе пектинов сохраняют свою текучесть и пластичность при температурах от 13 до 20 °C, но при температуре 40 °C гелевая основа пектина цитрусового теряет свою вязкость в отличие от геля на основе пектина яблочного [34].


Сохранение текучести геля на основе пектина яблочного может быть объяснено его более прочной и стабильной структурой в отличие от геля на основе пектина цитрусового. Таким образом, гелевые основы с пектином яблочным и натрия альгинатом менее подвержены влиянию температурных колебаний [34].

На процесс гелеобразования многих гидроколлоидов существенное влияние оказывает значение **рН среды**. Так, высокоэтерифицированные HM-пектины образуют гели при низких значениях рН (менее 3,5) и в присутствии сахарозы. Вязкость гелей каррагинанов и гуммиарабика снижается при значениях рН ниже 4,3. Растворы ксантановой камеди стабильны в широком диапазоне значений рН (2–12) [6, 11, 35].

Часто для гелеобразования, помимо создания определенного рН среды, требуется введение в систему катионов. Альгинаты, низкоэтерифицированные LМ-пектины образуют гели в присутствии ионов двухвалетных металлов (кальция) при значениях рН ниже 4,0. Низкоацетилированная геллановая камедь образует гели в присутствии ионов кальция, калия, магния и др. При этом прочность гелей повышается при увеличении концентрации ионов до определенного предела [6, 23].

При образовании гелей каррагинанов в присутствии солей вначале происходит переход от клубков молекул к спиралям с их последующей агрегацией. При этом ионы металлов, связываясь с молекулами полимеров, снижают электростатическое отталкивание между ними, способствуя агрегации полимерных цепей. На рисунке 7 представлены структуры гелей каппа-каррагинана с ионами калия и йота-каррагинана с ионами кальция [6].

При разработке составов гелей для приема внутрь необходимо учитывать, что некоторые *сахара* в процессе гелеобразования могут играть роль дегидратирующих агентов, что может приводить к изменению структурно-механических характеристик. Так, при гелеобразовании низкоацетилированной геллановой камеди присутствие сахаров в системе снижает расход ионов, необходимых для инициирования про-

Рисунок 7. Гелеобразование каррагинанов в присутствии катионов:

1 – твердый, хрупкий гель каппа-каррагинана с ионом калия; 2 – эластичный гель йота-каррагинана с ионом кальция [6]

цесса. При этом определенная концентрация сахара может способствовать повышению эластичности геля [6, 35, 38].

В исследовании [36] изучена зависимость вязкости системы «пектин – сахароза» от соотношения компонентов. Влияние концентрации сахарозы на структурную вязкость исследуемого геля представлено на рисунке 8.

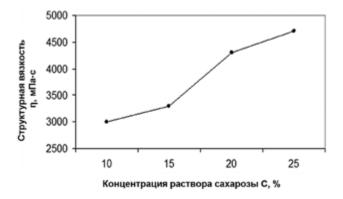


Рисунок 8. Зависимость структурной вязкости геля на основе пектина яблочного (5,5%) от концентрации сахарозы (20 об/мин, 20 °C) [34, 36]

Установлено, что структурная вязкость исследованных пектиновых гелей после добавления сахарозы повышается почти в 2 раза [34, 36].

Таким образом, гелеобразование гидроколлоидов зависит как от структуры молекулы полимера, так и от условий проведения процесса.

Смеси гелеобразователей

Гидроколлоиды могут выполнять функцию как собственно гелеобразователей, так и загустителей в зависимости от концентрации их растворов и других факторов [6, 11, 23, 35].

Для улучшения реологических характеристик гелей часто используют смеси различных гидроколлоидов. Природа синергизма может быть связана как с физическим взаимодействием, так и с химической ассоциацией молекул этих соединений.

В случае низких концентраций двух неассоциирующих гелеобразователей при их смешении будет образовываться гомогенная среда [рисунок 9 (1, 2)]. При высоких концентрациях возможно разделение на две фазы, каждая из которых будет обогащена одним из гелеобразователей [рисунок 9 (3)] [6].

Химическое взаимодействие молекул гелеобразователей может приводить к изменению свойств образованных гелей [рисунок 9 (4)] [6]. Типы бинарных полисахаридных гелевых структур представлены на рисунке 9 [37].

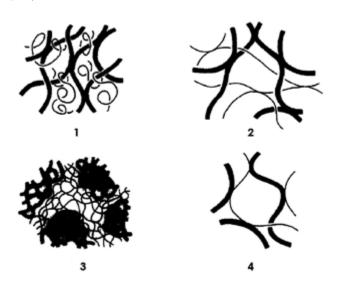


Рисунок 9. Типы бинарных полисахаридных гелевых структур:

1 – одиночная полимерная сеть, содержащая второй полимер в геле; 2 – взаимопроникающие сети; 3 – сети, разделенные фазой; 4 – связанная полимерная сеть [37]

Примерами систем, образованных в результате синергического взаимодействия гелеобразователей, являются гели ксантановой камеди и галактоманнанов (гуаровой камеди, камеди рожкового дерева). Основная цепь молекул галактомананнов состоит из остатков маннозы, а боковые цепи – из остатков галактозы. Степень и характер замещения у разных соединений различны. Так, гуаровая камедь имеет основную цепь с большим замещением, поэтому для развития синергического эффекта при гелеобразовании необходимы большие ее количества по сравнению с другими галактоманнами [6].

Ксантановая камедь взаимодействует с незамещенными участками основной цепи молекул галактоманнанов с образованием участков спиралевидного переплетения молекул. Этот процесс ускоряет гелеобразование и способствует повышению вязкости образующихся гелей [6].

Взаимодействие ксантановой камеди с галактоманнами зависит от соотношения компонентов, величины рН и наличия ионов в среде. Установлено, что гели с наибольшей вязкостью образуются при соотношении 80:20 для смеси «гуаровая камедь – ксантан» (рисунок 10) и 50:50 для смеси «камедь рожкового дерева – ксантан» [6].

При ассоциации камеди рожкового дерева и ксантановой камеди образуется термообратимый гель [6].

Наибольший синергический эффект взаимодействия ксантановой камеди с галактоманнанами достигается в деионизированной среде при нейтральных значениях рН [6].

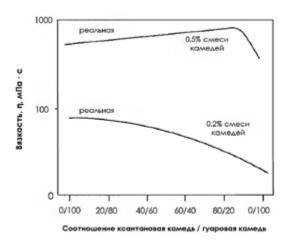


Рисунок 10. Структурная вязкость смесей ксантановой и гуаровой камедей (вискозиметр Brookfield LTV, 60 об/мин, 25 °C) [6]

Синергизм при гелеобразовании описан и для смесей галактоманнанов с каппа-каррагинанами. Их взаимодействие происходит по схожему механизму. Экспериментально установлено, что гели с наибольшей прочностью образуются при соотношениях каппа-каррагинана и камеди рожкового дерева от 60:40 до 40:60 [6].

Синергия по похожему механизму протекает и в смеси камеди рожкового дерева с агарами, полученными из некоторых видов водорослей [6].

В литературе описаны гели на основе комплексов гелеобразователей с галактоманнами: геллановая камедь – натрия альгинат – КМЦ; геллановая камедь – желатин; каппа-каррагинан – геллановая камедь; каппа-каррагинан – камедь рожкового дерева; геллановая камедь – агар-агар; каппа-каррагинан – геллановая камедь – пектин – камедь рожкового дерева и др. [11, 12, 38–41].

Гелеобразователи в составе ЛП и БАД к пище

Представленные на российском рынке ЛП и БАД к пище в форме гелей для приема внутрь содержат в составе как отдельные гелеобразователи, так и их смеси (рисунок 11).

Гелеобразователь	Название АЛ и БАД к пище	Гелеобразователь	Название АЛ и БАД к пище
• агар-агар • пектин	«Фосфаляетел», «Астеллас Форма Юроп Б.В.», Нимерийния	 карбоксиметилцел- люлоза 	«Мажий 86 гел», «Рармацевтические технология, Россия
натрия альгинат гуммиаробик никкоэтерифицирован най пектин (в составе помисорбовиео-95) ксантановая комедь гуаровая камедь	«Эйн би 1«Хаяс энд Боди контрол», «Артлайф», Россия	• натрий- карбаксиметинцел- люлоза	«СУПЕРДИН" Киндер илля», «Канарер биожительногом дин детей с имирителем, Ворег Соголител Сите АС Шиндерия «Пещител» сель с витаминами», «Админайр», Россия
• пектин яблочный • гуммиарабик	«Гастригель», «Урогель», «Артхайф», Россия	наприй- карбоксиметилцел- можаза, GRINDSTED & FF M612 (гуаровая камеды, ксангановая камеды)	«Черниковия», «Биоформурся Россия «Пелсен Р», «Уоборотория Розо- филформия, Франция
КОДИТОНОВОВ КОМЕДЬ КОДИТОНОВОВ КОМЕДЬ	«Signanc-Rosenta», C.P.M. Contract Pharma, Tepansons «Signen AOE», «Signen MU», Agel Enterprises,		
,	LLC, CIBA	• каррагинаны	

Рисунок 11. Гелеобразователи в составе ЛП и БАД к пище в форме гелей для приема внутрь, представленных на российском рынке [2–5, 42–47]

Биологическая активность

В некоторых случаях важным свойством многих гидроколлоидов является их фармакологическая неиндифферентность [6, 16, 48, 49].

Установлено, что пектины и ряд других полисахаридов способны снижать уровень холестерина крови, уменьшая тем самым риск развития атеросклероза; связывать и выводить из организма токсины [35, 50].

В эксперименте установлена эффективность использования в профилактическом питании пищевых продуктов с сочетанным содержанием пектина и витаминов [50].

В работе [51] описаны следующие свойства альгиновой кислоты и альгинатов: способность связывать и выводить из организма радионуклиды, при высоких ионообменных и сорбционных свойствах; оказывать регенеративное действие; способствовать нормализации кишечной перистальтики.

КОРРИГЕНТЫ ВКУСА

Вкус геля для приема внутрь определяется комбинацией вкусовых характеристик действующих и вспомогательных веществ. Следует отметить, что вязкая структура данной формы способствует маскировке вкуса действующих веществ за счет обволакивающих свойств гелевой фазы [52].

При этом большое значение имеют органолептические показатели гелеобразователя. Отмечено, что разновидности одного и того же гидроколлоида, полученные из разного сырья, имеют разный вкус [12]. Например, органолептические показатели яблочного, цитрусового и свекольного пектинов различны. Исследователи отмечают, что наилучшим вкусом и запахом обладает пектин яблочный [34].

Компоненты растительного происхождения, входящие в состав БАД к пище в форме гелей для приема внутрь, также могут выполнять функцию корригентов вкуса. Соответствующие примеры рассмотрены в первой части статьи [55].

Наиболее распространенным способом улучшения вкуса гелей для приема внутрь является введение корригентов.

Примеры натуральных ароматизаторов в составеЛПиБАДкпище: масло мяты перечной («Пепсан-Р», «Лаборатории Роза-Фитофарма», Франция), комплекс масел биксина, апельсина, лимона и мандаринового масла («Трансулоза», «Майоли Спиндлер Лабораториз», Франция), натуральный ароматизатор «Шоколад» («Эджел GLO», Agel Enterprises, LLC, США), натуральный ароматизатор «Апельсин» («СУПРА-ДИН® Киндер гель», Bayer Consumer Care AG, Швейцария) и др. [2–5, 46].

Как правило, в состав гелей для приема внутрь входят также и подсластители [1, 11, 53]. Наибольшее применение находят сахароза, фруктоза, сорбит и их комбинации (рисунок 12).

Подсластитель	Название АП или БАД к пище	Комбинация	Название АП нии БАД к пище
• сорбитол 70%	«Фесфалогель», «Астеллас Фарма Юроп Б.В.», Нимериания	• сукралоза	«Черниковже», биоформоуся
	«Межнай В _и зель», «Фармацеетические технологии», Россия	• сорбит	Россия
• фруктоза	«Кардиосель», «Седагель», «Джоонтель», «Уросель», «Акконейтрал», «Аргалайф», Россия «Эджел АСК», Apel Enterprises, (¿С. США «Эджано-Монента», СРАК Соппест	 сорбитол 70% кристализуемый натрия шикламат 	«Певсан-Р», «Чаборатории Роза-Фитофарма». Франция
	Pharma, Reparatus	• зегумен • сахараза (в составе полисорбовита-95)	«Эйч би 1 «Хилс энд боди изитрал», «Артайфи, Россия
• сахароза	«Пецитан-гель с витамизани», «Іримаціф», Россия «Стії Гудій» Кашійер вель», «Кандер Бисоштель» галь для делей с лецитивова, бурег Consumer Care AG Білеобидрия		
		• фруктоза	«Сербиогель», «Архиойфік Россия
• аспартам	«Трансулова», «Майоли Спициер Лабораторная, Франция	 сахарова (в составе полнсорбовита-95) 	

Рисунок 12. Подсластители в составе ЛП и БАД к пище в форме гелей для приема внутрь, представленных на российском рынке [2–5, 42–47]

Чаще всего для выбора корригирующих добавок используют метод оценки вкусового профиля с помощью балльной системы, разработанный А.И. Тенцовой, и метод оценки вкуса с помощью буквенных и числовых индексов, предложенный И.А. Егоровым [52].

КОНСЕРВАНТЫ И РЕГУЛЯТОРЫ рН

Как правило, гели для приема внутрь являются гидрофильными и содержат в качестве растворителя воду [54], поэтому в их состав требуется введение консервантов.

В научной литературе приведены сведения об использовании в качестве консервантов для данной ЛФ этилпараоксибензоата, метилпараоксибензоата, бензойной, сорбиновой кислот, натрия цитрата и другие [1].

Наиболее распространенными консервантами для ЛП и БАД к пище в форме гелей для приема внутрь являются кислота лимонная, натрия бензоат, калия сорбат и их комбинации (рисунок 13).

Консерванты	Названия ЛП или БАД к пище	
• кислота лимонная • ками сорбат	«Черникоежка», «Бнофармрус», Россия «Лецитин-гель свитаминами», «Арткойф», Россия	
• кислота лимонная • натрия бенасат	«Эджея GLO», Agel Enterprises, LLC, США «Эдванс-Ювента», С.Р.И. Contract Pharma, Германия	
кислота лимонная калия сорбат низин	«Априкот монине», «Глорисн», Аосия	
кислота лимонная калия сорбат натрия бенасат	«Магний В ₄ гель», «Фармацевтические технопогии», Россия «Кардиогель», «Седагель», «Джоинтеель», «Гастригель», «Урогель», «Артпайф», Россия	
ками сорбат натрия бенасат	«Эйч Би 1«Хияс энд Боди комтрат», «Артлойф», Россия «Алкомейтрат», «Артлайф», Россия	
• натрия бенасат	«Эджел AOX», Agel Enterprises, LLC, CUIA	
• метиларапироксибензоат	«Пепсан-Р», «Лабораторын Роза-Фитофарма», Франция	

Рисунок 13. Консерванты в составе ЛП и БАД к пище в форме гелей для приема внутрь, представленных на российском рынке [2–5, 42–47]

Следует отметить, что кислоты лимонная, сорбиновая, аскорбиновая и другие в составе гелей для приема внутрь выполняют также функцию регуляторов рН [17].

Одним из вариантов поддержания определенных значений рН в геле является также введение компонентов буферных систем [17]. Такую систему образуют, например, кислота лимонная и кальция цитрат («Сорбиогель», «Артлайф», Россия) [44].

ЗАКЛЮЧЕНИЕ

К основным группам вспомогательных веществ, используемых при производстве гелей для приема внутрь, относятся гелеобразователи, растворители, консерванты и корригенты вкуса.

Наиболее распространенными гелеобразователями для ЛП и БАД к пище в форме гелей для приема внутрь являются следующие гидроколлоиды: пектины, альгинаты, агар-агар, каррагинаны, КМЦ, Na-КМЦ, ксантановая и гуаровая камеди, гуммиарабик. При этом часто в состав вводят комбинации гелеобразова-

телей с эффектом синергизма (ксантановая камедь – гуаровая камедь и др.).

Структурно-механические свойства гелей зависят от физико-химических свойств гидроколлоида и условий гелеобразования (температуры, давления, значения рН, наличия солей и др.).

С целью коррекции вкуса и запаха в состав гелей для приема внутрь вводят подсластители (сахароза, фруктоза, сорбит и др.) и ароматизаторы.

Наличие воды в составе гелей для приема внутрь обусловливает введение консервантов (кислота лимонная, натрия бензоат, калия сорбат и их комбинации).

ЛИТЕРАТУРА

- D.A. Satyanarayana, P. K. Kulkarni, H. G. Shivakumar. Gels and Jellies as a Dosage Form for Dysphagia Patients: A Review // Current Drug Therapy. 2011. V. 6. P. 79–86.
- 2. Государственный реестр лекарственных средств. URL: http://grls.rosminzdrav.ru/ (дата обращения 04.02.2017).
- 3. Регистр лекарственных средств России. URL: http://www.rlsnet.ru/lec_index_id_93.htm (дата обращения 04.02.2017).
- Реестр продукции, прошедшей государственную регистрацию (выданные Федеральной службой, включая Управления). URL: http://fp.crc.ru/gosregfr/?type=list (дата обращения 04.02.2017).
- 5. Регистр БАД: Единый электронный справочник. URL: http://www.registrbad.ru/ (дата обращения 04.02.2017).
- 6. Справочник по гидроколлоидам / Под ред. Г.О. Филлипса и П.А. Вильямса, пер. с английского. СПб.: ГИОРД, 2006. 536 с.
- M.J. Dille, K.I. Draget, M.N. Hattrem. Modifying Food Texture. Chapter 9. The effect of filler particles on the texture of food gels // Ed. by: J.C. Rosenthal. – UK: Woodhead Publishing, 2015. P. 183–200.
- E. Dickinson. Food colloids research: historical perspective and outlook // Advances in Colloid and Interface Science. 2011. V. 165. P. 7–13
- T. Hanawa, M. Nakazawa, K. Mohri et al. Development of patient friendly preparations. Preparation and characterization of allopurinol gelatin gel containing polyethylene (oxide) // Journal of Pharmaceutical Science and Technology. 2000. V. 60(3). P. 175–182.
- S. Miyazaki, A. Takahashi, I. Kunihiko et al. Preparation and evaluation of gel formulations for oral sustained delivery to dysphagic patients // Drug Development and Industrial Pharmacy. 2009. V. 35(7). P. 780–787.
- S. Banerjee, S. Bhattacharya. Food gels: gelling process and new applications // Critical Reviews in Food Science and Nutrition. 2012. V. 52. P. 334–346.
- Handbook of Hydrocolloids, 2nd ed. // Ed. by G.O. Phillips, P.A. Williams. – UK: Woodhead Publishing, 2009. 948 p.
- И.Н. Анурова, Е.О. Бахрушина, С.П. Кречетов. Изучение влияния состава комбинированной матрицы на реологические характеристики экспериментальных образцов пероральных гелей нимесулида // Разработка и регистрация лекарственных средств. 2016. № 4(17). С. 98–104.

- 14. Е.О. Бахрушина, М.Н. Анурова. Обоснование состава перорального пролонгированного геля ибупрофена на основе отечественного матрицеобразователя композиционного полимерного носителя // Здоровье и образование в XXI веке. 2016. Т. 18. № 5. С. 117–120.
- К.В. Алексеев, И.А. Грицкова, С.А. Кедик. Полимеры для фармацевтической технологии / Под ред. проф. С.А. Кедика. – М.: Изд-во ИФТ, 2011. 511 с.
- Physician's Desk Reference (PDR) for Herbal Medicines / Ed. by T. Fleming. 2000. 858 p.
- Ассортиментный перечень для кондитерского и хлебопекарного производств. Торгово-промышленная группа компаний Союзснаб. 2015. С. 5–28.
- 18. CP Kelco. Products. URL: https://www.cpkelco.com/products/ zakazali (дата обращения 10.04.2017).
- Новые химические технологии. Пектины. URL: http://newchemistry.ru/glossary/glossary.php?gloss_id=3341 (дата обращения 27.11.2016).
- Foodchem International Corporation.
 Xanthan gum. URL: http://ru.foodchem.
 cn/products/Xanthan-Gum (дата обращения 10.04.2017).
- Загустители и гелеобразователи. URL: https://soyuzopttorg.com/catalog (дата обращения 10.04.2017).
- 22. КМЦ вместо гуара // Бизнес пищевых ингредиентов. 2012. № 2. С. 21.
- 23. Functional ingredients for food. Danisco A/C. 2016. P. 104–113.
- Xanthan good for water. URL: http:// www.danisco.com/product-range/ xanthan/ (дата обращения 10.04.2017).
- Pectin jelling agent. URL: http://www. danisco.com/product-range/pectin/ (дата обращения 10.04.2017).
- Пектины виды и применение. URL: https://soyuzopttorg.com/1977/pektin (дата обращения 10.04.2017).
- 27. Aгар, еще агар // Бизнес пищевых ингредиентов. 2013. № 6. С. 16–17.
- 28. Arap. URL: https://soyuzopttorg. com/1977/agar_zakazali (дата обращения 10.04.2017).
- V. Morris. Polysaccharides: their role in food microstructure // Understanding and controlling the microstructure of complex foods / Ed. by D. Julian McClements. – Cambridge: Woodhead Publishing, 2007. P. 3–39.
- Г. Шрамм. Основы практической реологии и реометрии. М.: Колос-С, 2003. 312 с.

- Е. Бибик. Реология дисперсных систем. Л.: Изд-во Ленингр. ун-та, 1981.
 172 с.
- А.И. Тенцова, В.М. Грецкий. Современные аспекты исследования и производства мазей. М.: Медицина, 1980.
 192 с.
- T. Moschakis. Microrheology and particle tracking in food gels and emulsions // Current Opinion in Colloid & Interface Science. 2013. V. 18. P. 311–323.
- 34. С. М. Запорожська. Розробка складу і технології вітамінного препарату для дітей у формі гелю: автореф. дисс. ... к.фарм.н. К.: Нац. мед. Академія післядипломної освіти ім. П. Шупика, 2010. 23 с.
- 35. Advances in Food Rheology and its Applications. Food Gels: Gelling Process and New Applications // Ed. by J. Ahmed, P. Ptaszek. 2017. P. 335–353.
- 36. С.М. Запорожська, І.І. Баранова, І.М. Грубник. Розробка складу і технології вітамінного гелю для дітей // Вісник фармації. Технологія лікарських препаратів . 2009. № 1(59). С. 27–29.
- A. Nazir, A. Asghar, A. Aslam Maan. Advances in Food Rheology and its Applications. Chapter 13. Food Gels: Gelling Process and New Applications / Ed. by J. Ahmed, P. Ptaszek. 2017. P. 335–353.
- S. Bayarri, I. Rivas, L. Izquierdo et al. Influence of texture on the temporal perception of sweetness of gelled systems // Food Research. 2007. V. 40. P. 900–908.
- E. Arda, S. Kara, O. Pekcan. Synergistic effect of the locust bean gum on the thermal phase transitions of κ-carrageenan gels // Food Hydrocolloids. 2009. V. 23. P. 451–459.
- S.H. Jong, J. Klok, F.V. Velde. The mechanism behind microstructure formation in mixed whey protein– polysaccharide cold-set gels // Food Hydrocolloids. 2009. V. 23. P. 755–764.
- M. Caggioni, P.T. Spicer, D.L. Blair et al. Rheology and microrheology of a microstructured fluid: the gellan gum case. Journal of Rheology. 2007. V. 51. P. 851–865.
- 42. Эйч Би 1 «Хэлс энд Боди контрол» (HB 1 «Health&Body control») // «Артлайф», официальный сайт. URL: http://www.lsgeotar.ru/eych-bi-khels-end-bodi-13834.html#lek_form (дата обращения 29.03.2017).
- Описание продукта PD 210225-2.4EN.
 GRINDSTED® FF M 612. Система стабилизаторов Danisco A/C. 2016. 3 p.

- Артлайф. Фитогели. URL: http://www. artlife.ru/catalog/b/fito.html (дата обращения 04.02.2017).
- 45. Черникоежка. URL: http:// chernikoezhka.ru/ (дата обращения 27.11.2016).
- 46. Agel. URL: http://agel.ru/products/gel/ (дата обращения 04.02.2017).
- 47. Gloryon. URL: https://www.gloryon. com/ruCY/info (дата обращения 27.11.2016).
- Биологически активные вещества растительного происхождения: В 3-х т. / Российская академия наук, Главный ботанический сад им. Н.В. Цицина. М.: Наука, 2000. Т. 1. 347 с.
- 19. Т.А. Кузнецова, И.Д. Макаренкова. Влияние пробиотического продукта, содержащего бифидобактерии и биогель из бурых водорослей, на кишечную микрофлору и показатели врожденного иммунитета у мышей с экспериментальным лекарственным дисбактериозом кишечника // Вопросы питания. Т. 84. № 1. 2015. С. 73–79.
- Т.В. Спиричева, В.Б. Спиричев, В.М. Коденцова и др. Эффективность использования в профилактическом питании пищевых продуктов с сочетанным содержанием пектина и витаминов // Вопросы питания. Т. 80. № 4. 2011. С. 49–54.
- А.Г. Одинец, О.И. Орлов, В.К. Ильин. Радиопротекторные и антиоксидантные свойства геля из бурых морских водорослей // Вестник восстановительной медицины. 2015. № 6(70). С. 89–96.
- 52. М.Н. Анурова, Е.О. Бахрушина, Н.Б. Демина. Проблемы коррекции органолептических свойств лекарственных препаратов // Разработка и регистрация лекарственных средств. 2015. № 13. С. 64–73.
- A.C. Mosca, F. Velde. Taste enhancement in food gels: Effect of fracture properties on oral breakdown, bolus formation and sweetness intensity // Food Hydrocolloids. 2015. V. 43. P. 794–802.
- 54. Приказ Минздрава России от 27.07.2016 N 538н «Об утверждении Перечня наименований лекарственных форм лекарственных препаратов для медицинского применения» (Зарегистрировано в Минюсте России 17.08.2016 № 43291).
- 55. Е.Ю. Загорулько, А.А. Теслеев. Гели для приема внутрь. Часть 1. Лекарственные препараты и биологически активные добавки к пищи (обзор) // Разработка и регистрация лекарственных средств. 2017. № 3(20). С. 42–48.