УДК 615.31

СИНТЕЗ И СТРОЕНИЕ НЕКОТОРЫХ N-АРИЛБЕНЗАМИДИНОВ

Е.В. Куваева¹*, Д.А. Колесник¹, Г.В. Ксенофонтова¹, Т.Л. Семакова¹, И.П. Яковлев¹

Резюме. Изучена реакция бензонитрила с некоторыми ариламинами. Установлено, что строение ариламинов влияет на выход N-арилбензамидинов и возможность их получения, что подтверждено квантово-химическими расчетами. Реакция бензонитрила с ариламинами является термодинамически контролируемой реакцией. Максимальные выходы продукта были получены при t=180 °C. Строение синтезированных соединений доказано с помощью современных физико-химических методов анализа: ¹H-ЯМР-, ¹³C-ЯМР-, ¹5N-HCQS-спектроскопии, рентгеноструктурного анализа (РСА).

Ключевые слова: бензонитрил, ариламины, N-арилбензамидины, ЯМР-спектроскопия, рентгеноструктурный анализ, квантово-химические расчеты.

SYNTHESIS AND STRUCTURE OF SOME N-ARYLBENZAMIDINES

E.V. Kuvaeva^{1*}, D.A. Kolesnik¹, G.V. Ksenofontova¹, T.L. Semakova¹, I.P. Yakovlev¹

Abstract. The reaction of benzonitrile with some arylamines was studied. It was found that the structure of arylamines affects the yield of N-arylbenzamidines and the possibility of their obtainment, which was confirmed by quantum-chemical calculations. The reaction of benzonitrile with arylamines is thermodynamically controlled. Maximal yield of product was obtained at t=180 °C. The structure of synthesized compounds was proved by means of modern physicochemical methods of analysis: NMR ¹H-, ¹³C-, ¹⁵N-spectroscopy, X-ray diffraction analysis (RSA).

Keywords: benzonitrile, arylamines, N-arylbenzamidines, NMR spectroscopy, X-ray diffraction analysis, quantum-chemical calculations.

- 1 ФГОУ ВО «Санкт-Петербургская химико-фармацевтическая академия» Минздрава России (ФГОУ ВО СПХФА Минздрава России), 197376, Россия, г. Санкт-Петербург, ул. Проф. Попова, д. 14, лит. А
- 1 St. Petersburg Chemical-Pharmaceutical Academy of the Ministry of Healthcare of Russia, 14 A, Prof. Popova str., Saint-Petersburg, 197376, Russia
- * адресат для переписки:

 $\hbox{E-mail: elena.} kuva eva@pharminnotech.com$

ВВЕДЕНИЕ

Амидины обладают высокой биологической активностью. Амидиновый фрагмент (обычно в составе гетероцикла) входит в структуру многих лекарственных препаратов, например нафтизина, галазолина, фентоламина, хлордиазепоксида. Амидиновые основания часто используются как дезинфицирующие средства. Также известно, что структурные аналоги циклических амидинов обладают противопротозойной, антидепрессантной и антигипертензивной активностью. В то же время методы получения амидинов, известные из литературы, не носят систематического характера, а результаты изучения их строения, на наш взгляд, нельзя считать строго обоснованными, что является несомненным пробелом в изучении этой интересной группы органических соединений, тем более что многие из них являются исходными соединениями в синтезе гетероциклических соединений. Поэтому разработка эффективных методов получения таких соединений и изучение их строения стало целью нашей работы.

МАТЕРИАЛЫ И МЕТОДЫ

В работе использовали бензонитрил (CAS № 100-47-0, Sigma-Aldrich), анилин (ч.д.а., ЗАО «Вектон», Россия), 2-броманилин (ч., ЗАО «Вектон», Россия), 3-броманилин (ч., ЗАО «Вектон», Россия), 4-броманилин (ч., ЗАО «Вектон», Россия), 3-нитроанилин (ч., ЗАО «Вектон», Россия), 4-нитроанилин (ч.д.а., ЗАО «Вектон», Россия), 4-метоксианилин (ч.д.а., ЗАО «Вектон», Россия), 2-метиланилин (ч.д.а., ЗАО «Вектон», Россия), 4-метиланилин (ИМП, ЗАО «Вектон», Россия), 4-метиланилин (ч.д.а., ЗАО «Вектон», Россия).

Спектры 1 Н-ЯМР, 13 С-ЯМР, 15 N-HSQC растворов веществ в ДМСО- d_{6} записывали на спектрометре Bruker АМ-400 (400 МГц) (США).

Монокристальный рентгено-структурный анализ (РСА) осуществляли на диффрактометре Bruker SMART 1000 CCD (Мо K_{α} -излучение) (США). Кристаллы соединений, прозрачные бесцветные иголки, были выращены из этанольного раствора путем медленного испарения при 18–20 °C.

Теплота образования веществ была рассчитана полуэмпирическими методами AM1, PM3, MNDO, MINDO/3 с помощью пакета программ GAMESS. Заряды атомов азота в ариламинах были рассчитаны полуэмпирическими методами AM1, RM1, MNDO с помощью пакета программ GAMESS.

Методика

К смеси 0,34 моль ариламина (II а-к) и 0,33 моль бензонитрила (I а) при перемешивании в течение 20 мин прибавляли 0,34 моль безводного AlCl₃. Смесь нагревали в течение 30 мин до 200 °С и в расплавленном состоянии медленно выливали в 1,2%-й раствор HCl. К полученной реакционной массе прибавляли 10,0 г активированного угля, полученную суспензию отфильтровывали. Фильтрат приливали к 15,5%-му раствору NaOH. Выпавший осадок отфильтровывали, сушили и перекристаллизовывали из бензола. Выход – 53–90%.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

N-арилбензамидины (III а-к) были получены нами взаимодействием ариламинов (II а-к) с бензонитрилом (I а) в присутствии безводного алюминия хлорида (рисунок 1) [1, 2].

R=H (a), 2-Br (δ), 3-Br (в), 4-Br (г), 2-CH₃ (д), 3-CH₃ (e), 4-CH₃ (ж), 3-NO₂ (3), 4-NO₂ (и), 4-OCH₃ (к)

Рисунок 1. Синтез *N*-арилбензамидинов

Было установлено, что электронодонорные заместители в кольце ариламина повышают выход продуктов на 20–30%, что, возможно, связано с увеличением нуклеофильности соответствующих аминов. Введение электроноакцепторных заместителей приводит к снижению выхода продуктов на 30–40%.

Наличие нитрогруппы в *о*-положении настолько понижает реакционную способность амина, что ожидаемый амидин получить не удается. Этот факт хорошо коррелируется с результатами квантово-химических расчетов, выполненных полуэмпирическими методами АМ1, MNDO, RM1, которые показывают, что нитрогруппа, особенно в положении 2, приводит к понижению отрицательного заряда на атоме азота, а следовательно, и уменьшению нуклеофильности ариламинов (таблица 1).

Нами было установлено, что минимальная температура, при которой возможно получение монозамещенных *N*-арилбензамидинов (III а-к), составляет

150 °C. Максимальные выходы продуктов были получены при температуре 180 °C.

Таблица 1. Заряды на атоме азота ($\mathrm{NH_2}$ -группы) в ариламинах (III а-к)

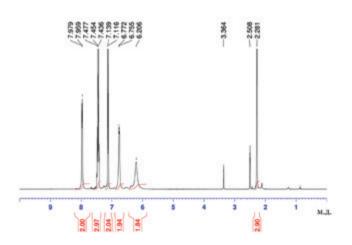
№ соед.	R	Заряды на атоме азота			
		AM1	MNDO	RM1	
III a	Н	-0,412	-0,381	-0,491	
III	2-NO ₂	-0,371	-0,340	-0,454	
III 3	3-NO ₂	-0,402	-0,371	-0,482	
Ши	4-NO ₂	-0,386	-0,356	-0,467	
III 6	2-Br	-0,401	-0,230	-0,476	
Шв	3-Br	-0,407	-0,375	-0,483	
Шг	4-Br	-0,407	-0,373	-0,484	
Шд	2-CH ₃	-0,411	-0,231	-0,489	
III e	3-CH₃	-0,413	-0,382	-0,492	
Шж	4-CH ₃	-0,412	-0,379	-0,491	
Шк	4-OCH ₃	-0,416	-0,221	-0,495	

Строение N-арилбензамидинов

Для синтезированных *N*-арилбензамидинов теоретически возможно существование двух таутомерных форм (A, Б).

$$\bigcap_{A}^{NH_2} \bigcap_{R}^{NH_2} \bigcap_{B}^{NH} \bigcap_{R}^{NH}$$

Авторы работ [3, 4] отдают предпочтение таутомеру Б, однако без достаточных, на наш взгляд, оснований. Для превращения таутомера Б в таутомер А используется катализатор сложного строения [3].


$$R-CN + R'NH_2 \xrightarrow{cat.} R-C \xrightarrow{NH} \xrightarrow{1,3-H-shift} R-C \xrightarrow{NH_2}$$

$$NR'$$

Строение N-арилбензамидинов (III а-к) нами доказано методами 1 H-ЯМР-, 13 C-ЯМР-, 15 N-HCQS-спектроскопии, а также с помощью PCA.

Спектры 1 Н-ЯМР N -арилбензамидинов (III а-к) в ДМСО- d_6 характеризуются наличием резонансных сигналов протонов ароматических колец (\sim 6,63–8,14 м.д.), сигналов в области \sim 2,10–2,30 м.д. (СН $_3$ -Аг) в спектрах соединений (III д-ж), протонов группы ОСН $_3$ при 3,30 м.д. (III к), а также уширенного сигнала в области \sim 5,88–6,73 м.д. протонов группы NH $_2$ полученных соединений.

На рисунке 2 представлен спектр 1 Н-ЯМР $^{N-4}$ -метилфенил-бензамидина (III ж) в ДМСО- d_{6} . Наличие одного уширенного сигнала при 6,20 м.д. с интегральной интенсивностью ~2H позволяет говорить о том, что это соединение в растворе ДМСО- d_{6} имеет преобладающую таутомерную форму A.

Рисунок 2. Спектр 1 Н-ЯМР раствора N-4-метилфенилбензамидина (III ж) в ДМСО- \mathbf{d}_{6}

Данные двумерной корреляционной спектроскопии ¹⁵N-HSQC (HSQC – Heteronuclear Single Quantum Correlation), показывающие прямые корреляции атомов азота со связанными с ними протонами, также свидетельствуют о том, что соединения (III а-к) существуют в основном в таутомерной форме A.

В спектре ^{15}N -HSQC N-4-метилфенилбензамидина (III ж) виден всего один корреляционный пик между сигналом атома азота ^{15}N и сигналом связанных с ним протонов (рисунок 3).

В спектрах 13 С-ЯМР соединений (III а-к), помимо сигналов атомов углерода бензольных колец в области \sim 114,07–151,78 м.д. и сигналов углерода метильных и метоксигрупп (\sim 17,02 и 55,59 м.д.) в слабом поле при \sim 151,15–155,45 м.д., наблюдается сигнал атомов углерода группы -C=N.

Спектр 13 С-ЯМР соединения (III ж) в ДМСО- d_6 представлен на рисунке 4.

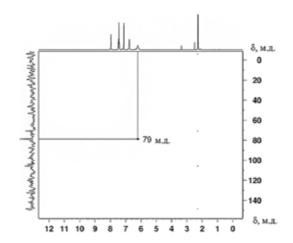


Рисунок 3. Спектр 15 N-HSQC раствора N-4-метилфенилбензамидина (III ж) в ДМСО- \mathbf{d}_6

Рисунок 4. Спектр 13 С-ЯМР раствора N-4-метилфенилбензамидина (III ж) в ДМСО- \mathbf{d}_6

Строение полученных *N*-арилбензамидинов (III а-к) в кристаллическом состоянии было однозначно доказано монокристальным рентгеноструктурным анализом (рисунки 4, 5), который показал, что *N*-арилбензамидины (III а-к) существуют в *N*-арилиминно-аминной таутомерной форме (A).

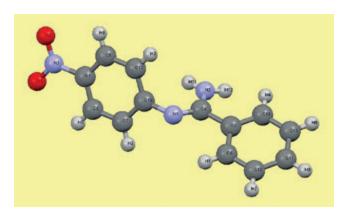


Рисунок 5. Молекулярное строение N-4-нитрофенилбензамидина (III и)

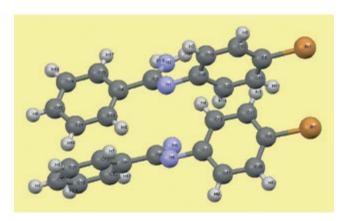


Рисунок 6. Молекулярное строение N-4-бромфенилбензамидина (III г)

Одним из критериев выбора существования N-арилбензамидинов в таутомерной форме A в газовой фазе может служить теплота образования соответствующих таутомеров, которая была рассчитана полуэмпирическими методами AM1, PM3, MNDO, MINDO/3 с помощью пакета программ GAMESS для молекул, находящихся в вакууме при °К (таблица 2).

Таблица 2.
Теплота образования N-арилбензамидинов (III а, д)
в вакууме при °К

	Теплота образования кДж/моль			
№ соединение	AM1	PM3	MNDO	MINDO/3
III (a)-A N-фенилбензамидин	79,58	73,55	80,48	61,32
III (a)-Б N-фенилбензамидин	83,20	74,91	85,64	66,67
III (д)-A N-4- нитрофенилбензамидин	81,04	62,94	94,76	41,52
III (д)-Б N-4- нитрофенилбензамидин	85,36	64,76	100,98	47,03

Согласно проведенным расчетам наиболее предпочтительной, энергетически более устойчивой является таутомерная форма А. Теплота образования таутомера А меньше на величину ~4 кДж/моль.

ЗАКЛЮЧЕНИЕ

Таким образом, нами установлено, что возможность и направление реакции бензонитрила с ариламинами определяется электронной природой заместителя в молекулах последних и является термодинамически контролируемой реакцией, позволя-

ющей получать N-арилбензамидины с максимальным выходом при $t=180\,^{\circ}\text{C}$.

По данным 1 Н-ЯМР-, 13 С-ЯМР-, 15 N-HSQC-спектрам, РСА N-арилбензамидины существуют в N-арилимино-аминной таутомерной форме.

ЛИТЕРАТУРА

- Е.В. Куваева, Е.В. Федорова, В.В. Зайцев, И.П. Яковлев, В.И. Захаров, Т.Л. Семакова. Синтез и строение гидрохлоридов ароиламидинов и N-арилбензамидинов // Журнал органической химии. 2011. Т. 48. С. 221–225.
- 2. Е.В. Куваева, Е.В. Федорова, И.П. Яковлев, Е.Н. Кириллова, Г.В. Ксенофонтова, В.И. Захаров. Особенности синтеза N-арилбензамидинов // Известия Санкт-Петербургского государственного технологического института (технологического университета). 2012. № 14(40). С. 58–61.
- J. Wang, F. Xu, T. Cai, Q. Shen. Addition of Amines to Nitriles Catalyzed by Ytterbium Amides: An Efficient One-Step Synthesis of Monosubstituted N-Arylamidines // Organic Lett. 2008. Nº 10(3). P. 445–448.
- L. Zhou, Y. Zhang. Low-Valent Titanium Induced Reductive Coupling of Nitriles with Nitro Compound // Synthetic Communications. 1998. № 28(17). P. 3249–3262.