УДК 621.039.8

СИНТЕЗ РАДИОФАРМАЦЕВТИЧЕСКОГО ЛЕКАРСТВЕННОГО ПРЕПАРАТА, МЕЧЕННОГО РЕНИЕМ-188 И СОДЕРЖАЩЕГО ЛИПИОДОЛ

Г.Е. Кодина¹, А.О. Малышева¹*, Н.А. Таратоненкова¹, Е.А. Лямцева¹, Н.А. Константинов¹

Резюме. Радиофармацевтический лекарственный препарат, меченный рением-188 и содержащий липиодол, синтезируют в медицинских организациях из набора реагентов и элюата из генератора ¹⁸⁸W/¹⁸⁸Re. Набор реагентов состоит из трех флаконов: лиофилизированного реагента № 1, содержащего олова дихлорид, лиофилизированного реагента № 2, содержащего натрия дитиобензоат, и раствора липиодола. Была разработана технология получения лиофилизированного реагента, содержащего олова дихлорид. Перед синтезом радиофармацевтического лекарственного препарата (РФЛП) проводили контроль качества раствора натрия перрената, ¹⁸⁸Re, получаемого из генератора (элюат). Результаты контроля качества РФЛП, полученного с использованием лиофилизированного реагента № 1 отечественного и импортного производства, показали их идентичность по показателю «радиохимическая чистота».

Ключевые слова: радиофармацевтические лекарственные препараты, рений-188, липиодол, гепатоцеллюлярная карцинома, контроль качества, радиохимическая чистота.

SYNTHESIS OF RADIOPHARMACEUTICAL WITH RHENIUM-188 AND LIPIODOL

G.E. Kodina¹, A.O. Malysheva^{1*}, N.A. Taratonenkova¹, E.A. Lyamtseva¹, N.A. Konstantinov¹

Abstract. Radiopharmaceutical with rhenium-188 and lypiodol is synthesized in medical organizations from a kit of reagents and eluate from the 188 W/ 188 Re generator. The kit of reagents consists of three vials: lyophilized reagent N 1 containing tin dichloride, lyophilized reagent N 2 – sodium dithiobenzoate, and reagent N 3 – lipiodol. A domestic technology was developed for obtaining a lyophilized reagent containing tin dichloride. Quality control of the sodium perrhenate, 188 Re solution obtained from the generator (eluate) should be carried out before each synthesis of the radiopharmaceutical. The results of quality control of radiopharmaceuticals synthesized from lyophilized reagent N 1 of domestic and imported production, showed their identity by index «radiochemical purity».

Keywords: radiopharmaceuticals, rhenium-188, lipiodol, hepatocellular carcinoma, quality control, radiochemical purity.

- 1 ФГБУ «Государственный научный центр Российской Федерации Федеральный медицинский биофизический центр имени А.И. Бурназяна» (ФГБУ ГНЦ ФМБЦ им. А.И. Бурназяна ФМБА России), 123182, Россия, г. Москва, ул. Живописная, д. 46
- 1 A.I. Burnasyan Federal Medical Biophysical Center FMBA of Russia, 46, Zhivopisnaya str., Moscow, 123182, Russia

* адресат для переписки: E-mail: an-malysheva@yandex.ru

ВВЕДЕНИЕ

Радиофармацевтический лекарственный препарат (РФЛП), меченный рением-188 и содержащий липиодол, предназначен для внутриартериальной радионуклидной терапии (ВАРТ) гепатоцеллюлярной карциномы (ГЦК). ГЦК – наиболее распространённая опухоль печени, результат злокачественного перерождения гепатоцитов. Является пятой самой распространенной опухолью по всему миру и даже занимает второе место с точки зрения смертности (около 1 миллиона смертей ежегодно). Частота возникновения ГЦК значительно варьируется по регионам. Наиболее высокий уровень заболеваемости отмечается в Юго-Восточной Азии и Африке, но частота возникновения этой опухоли в развитых странах, особенно в Европе, стремительно возрастает [1].

Механизм действия РФЛП, меченного рением-188 и содержащего липиодол, основан на эмболизации (блокировании кровотока) питающей опухоль артерии и воздействии на раковые клетки ионизирующим излучением. В настоящее время в мире выпускается только один РФЛП для радионуклидной терапии ГЦК – ¹³¹І-липиодол (Lipiocis®, Франция).

В последнее десятилетие для лечения опухолей печени многие исследователи за рубежом предлагают использовать РФЛП, меченный рением-188 и содержащий липиодол. Это связано с тем, что, с одной стороны, появились коммерческие генераторы 188 W/ 188 Re, позволяющие получать в медицинских учреждениях рений-188. Радионуклид является бета-гамма-излучателем, $E_{\text{$Max}}$ =2,1 МэВ, $E_{\text{$Y}}$ =155 кэВ, $T_{1/2}$ =17 ч. Максималь-

ный пробег бета-частиц в тканях – 11 мм при средней глубине проникновения 3,8 мм. Наличие лиофилизированных наборов реагентов, с другой стороны, позволило синтезировать радиофармацевтический препарат непосредственно в медицинском учреждении перед его использованием. Полученные первичные данные клинических исследований РФЛП, меченного ¹⁸⁸Re и содержащего липиодол, показали, что он хорошо переносится больными и достаточно эффективен [2–4]. По сравнению с ¹³¹I-липиодолом РФЛП, меченный ¹⁸⁸Re, оказывает меньший цитотоксический эффект на клетки периферической крови [5, 6].

Липиодол представляет собой смесь моно-, ди- и трийодированных этиловых эфиров линолевой, олеиновой и стеариновой кислот; обычно он содержит до 38% йода. В 1979 году К. Nakakuma и др. [7] обнаружили селективную задержку йодированного масла в очагах ГЦК после введения в печеночную артерию. Установлено, что липиодол задерживается в ГЦК на срок от нескольких недель до полугода и более, тогда как выведение его из нормальной паренхимы печени происходит в течение 7 суток [8].

Эффективный и надежный способ получения РФЛП, меченного ¹⁸⁸Re и содержащего липиодол, из лиофилизированных наборов реагентов «Lipo-SSS», которые выпускает для исследовательских целей IZOTOP (Institute of Isotopes Co., Будапешт, Венгрия), и элюата из генератора (раствор натрия перрената, ¹⁸⁸Re) был разработан совместно сотрудниками Всестороннего онкологического центра маркиза Эжена и Национальной высшей школы химии в г. Ренне (ENSCR, Франция) [9].

РФЛП, меченный рением-188, представляет собой комплекс ¹⁸⁸Re с дитиобензоатом, экстрагированный липиодолом. В этом соединении атом металла окружен шестью атомами серы и находится в 3-валентном состоянии, в котором он более устойчив, чем в пятивалентном состоянии [10, 11].

Набор лиофилизированных реагентов Lipo-SSS состоит из двух флаконов с реагентами: флакон № 1 содержит лиофилизированную композицию восстановителя, в качестве которого используется олова дихлорида дигидрат, флакон № 2 содержит комплексообразователь в лиофилизированном виде. В настоящее время в России данный набор не производится и не закупается и, следовательно, не проводится синтез РФЛП на основе рения-188. Липиодол «Lipiodol-Ultra-Fluide» (Guerbert LLC, Франция) зарегистрирован в России с 21.04.2011 (регистрационное удостоверение П № 008677). Регистрационное удостоверение действует бессрочно, и данный компонент набора доступен в России.

В связи с вышеизложенным целью работы является освоение технологии получения лиофилизированной композиции для восстановления рения-188 (реагент № 1), разработка методов анализа компонентов, входящих в лиофилизированную композицию, синтез РФЛП и сравнение качества лекарственных препаратов [по параметрам «рН» и «радиохимическая чистота (РХЧ)»], приготовленных на основе лиофилизатов флакона № 1 отечественного и импортного производства. Решение поставленных задач позволит создать новый радиофармацевтический лекарственнный препарат терапевтического назначения для нужд отечественной ядерной медицины.

МАТЕРИАЛЫ И МЕТОДЫ

Лиофилизированную композицию реагента № 1 получали следующим образом: в предварительно пробарботированной аргоном (ГОСТ 10157-79, высш. сорт) воде для инъекций (ООО «Гротекс», Россия) растворяли глюконат натрия (кат. № S2054, Sigma-Aldrich, США), оксалата калия моногидрат (кат. № 60425, Fluka, Швеция) и аскорбиновую кислоту (кат. № 95212, Fluka, Швеция). Раствор перемешивали током аргона в течение 20 мин. В получившийся раствор при непрерывном барботировании аргоном добавляли олова дихлорида дигидрат (кат. № 31669, Sigma-Aldrich, США), перемешивали током аргона до полного растворения в течение

10 мин. Затем полученный раствор фильтровали через стерилизующий фильтр (Merck Millipore, Швеция, мембрана фильтра DuraporeTM) с размером пор 0,22 мкм, фасовали по 1,0 мл при помощи степпера механического Biohit (Sartorius, Финляндия) во флаконы для лекарственных средств (Datwyler Pharma Packaging, Бельгия, Германия, Италия) и помещали в лиофильную сушку Genesis SQ EL-85 (VerTis, Германия). По окончании процесса лиофилизации камеру сушки заполняли аргоном, флаконы с лиофилизатом вынимали, быстро закрывали резиновыми пробками, алюминиевыми колпачками и укупоривали закатыванием при помощи механического закрывающего ключа (Bochem, Германия).

Степпер механический BIOHIT, Sartorius

Синтез РФЛП, меченного рением-188 и содержащего липиодол, проводили следующим образом: во флакон с лиофилизированной композицией реагента № 1 вводили 1,0 мл раствора натрия перрената, ¹⁸⁸Re, с необходимой объемной активностью. Затем флакон № 1 инкубировали 15 мин при комнатной температуре, периодически встряхивая. Во флакон № 2, содержащий комплексообразователь в лиофилизированном

виде, вводили 0,5 мл 0,9% раствора натрия хлорида изотонического для инъекций (рег. № ЛС-002680) и перемешивали до полного растворения компонента. Из флакона № 2 отбирали все содержимое и вносили его во флакон № 1. Получившийся раствор инкубировали на сухой бане Sahara 310 (Rocker, Тайвань) при 100 °C в течение 15 мин. После нагревания раствор выдерживали при комнатной температуре около 5 мин, после чего вводили во флакон 3 мл липиодола «Lipiodol-Ultra-Fluide». Смесь перемешивали при помощи шейкера MS3 basic (IKA, Германия) 5 мин. Затем смесь центрифугировали 10 мин при 2200 g на центрифуге ОПН-16 («Labtex», Россия) и проводили разделение фаз. Комплекс рения-188 с дитиобензоатом натрия экстрагируется липиодолом и находится в нижнем слое. Отбирали жидкость из нижнего слоя и пропускали ее через стерилизующий фильтр 0,22 мкм в стерильный чистый флакон вместимостью 10 мл.

Определение радиохимической чистоты (РХЧ) синтезированных РФЛП проводили методом тонкослойной хроматографии (ТСХ). Для этого применяли пластинки с тонким слоем силикагеля на алюминиевой подложке размером 10×100 мм (кат. № 5553, Merck, Германия), а в качестве подвижной фазы использовали смесь петролейного эфира (кат. № 101316-46-5, Sigma-Aldrich, США) и дихлорметана (кат. № CL03352500, Scharlab, Испания) в соотношении 6:4. Хроматографирование проводили восходящим методом [12]. Распределение компонентов препарата по длине хроматограммы определяли путем ее сканирования со скоростью 1 мм/с, используя сканер хроматограмм Mini-scan (Bioscan, США) с детектором ү-излучения, который регистрирует количество импульсов от равномерно движущейся хроматограммы.

Определение РХЧ раствора натрия перрената, ¹⁸⁸Re, проводили методом ТСХ. Для этого использовали пластинки с тонким слоем силикагеля на алюминиевой подложке 10×100 мм (кат. № 5553, Merck, Германия), а в качестве растворителя – ацетон (х.ч., ТУ 6-09-1707-77, Россия). Хроматографирование проводили восходящим методом [12]. Сканирование хроматограмм проводили на приборе «ГаммаСкан-01А» (ООО «НТЦ «Амплитуда», Россия) с детектором ү-излучения, который регистрирует количество импульсов от равномерно движущейся со скоростью 1 мм/с хроматограммы. В данной системе натрия перренат, ¹⁸⁸Re, движется с фронтом растворителя. Типичные радиохроматограммы, полученные в результате определения РХЧ раствора натрия перрената, ¹⁸⁸Re, полученного из генераторов, представлены на рисунке 1.

Определение содержания олова дихлорида дигидрата в растворе лиофилизированного реагента № 1 проводили спектрофотометрическим методом на спектрофотометре Helios Omega (Thermo Scientific,

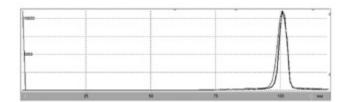


Рисунок 1. Радиохроматограммы раствора натрия перрената, ¹⁸⁸Re

США) с использованием 0,16% раствора калия рениевокислого (кат. № 243590, Aldrich, США) и 20% раствора калия роданистого (кат. № 207779, Sigma-Aldrich, США) в кювете с толщиной слоя 10 мм. Образующийся комплекс имеет максимум поглощения при 353 нм [13]. Для определения лиофилизированный реагент растворяли в 10,0 мл 0,9% раствора натрия хлорида изотонического для инъекций.

Определение содержания аскорбиновой кислоты в растворе лиофилизированного реагента № 1 проводили спектрофотометрическим методом на спектрофотометре Helios Omega (Thermo Scientific, CША) с использованием 10% раствора натрия цитрата (кат. № 121656, Panreac, Испания), раствора квасцов железоаммонийных (ч.д.а., ТУ 6-09-5359-88, Россия), 0,1% раствора о-фенантролина (кат. № 21110, Dudley Chemical, США) в кювете с толщиной слоя 10 мм. Образующийся комплекс имеет максимум поглощения при 510 нм [14]. Для определения лиофилизированный реагент растворяли в 5,0 мл 0,9% раствора натрия хлорида изотонического для инъекций.

Определение рН растворов РФЛП и лиофилизированного реагента № 1 проводили методом потенциометрии на рН-метре Seven Easy S20 (Mettler Toledo, Швейцария) [15]. Измерение активности РФЛП и раствора натрия перрената, 188 Re, проводили с помощью дозкалибратора Isomed 2010 (Nuklear-Medizintechnik Dresden Gmbh, Германия).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Рений-188 получают из сорбционного генератора 188 W/ 188 Re при распаде материнского радионуклида вольфрама-188, который образуется при облучении в ядерном реакторе мишеней, обогащенных по изотопу 186 W по реакции 186 W(2n, 2 γ) 188 W. При элюировании генератора рений в форме натрия перрената (NaReO₄) переходит в раствор. Объемная активность РФЛП на основе липиодола, меченного рением-188, составляет 120–1850 МБк/мл [10].

При синтезе РФЛП, меченного рением-188 и содержащего липиодол, раствор натрия перрената, 188Re (элюат) получали из генератора ГРЕН-1 (Физико-энергетический институт имени А.И. Лейпунского,

г. Обнинск, Россия) и генератора 188 W/ 188 Re с дистанционной системой элюирования и концентрирования элюата NEPTIS-TH (IRE, Бельгия).

Перед синтезом РФЛП необходимо контролировать качество элюата, а именно его радиохимическую чистоту, используя хроматографическую систему, описанную выше. РХЧ растворов натрия перрената, ¹⁸⁸Re, составила более 99%, что соответствует требованиям, предъявляемым к качеству раствора натрия перрената, ¹⁸⁸Re, используемого для синтеза различных РФЛП.

Синтез РФЛП, меченного рением-188 и содержащего липиодол, состоит из двух стадий. На первой стадии при введении раствора натрия перрената, ¹⁸⁸Re, во флакон с лиофилизированным реагентом № 1 происходит восстановление рения-188 двухвалентным оловом. Олова дихлорида дигидрат ($SnCl_2 \cdot 2H_2O$) – соединение, которое наиболее часто используется в качестве восстановителя технеция-99м и рения-188 при получении радиофармацевтических препаратов, содержащих эти радионуклиды. При производстве лиофилизированных реагентов на любой стадии технологического процесса возможна потеря двухвалентного олова за счет его окисления до четырехвалентного состояния. Содержание в лиофилизированном реагенте более 30% Sn(IV) может привести к снижению качества конечного продукта - готового радиофармацевтического препарата. Поэтому для предотвращения окисления двухвалентного олова в состав реагента вводят различные антиоксиданты и стабилизаторы, а сам процесс приготовления раствора реагента проводят при постоянном барботировании током инертного газа, в качестве которого обычно используется аргон или азот.

Важное значение при получении лиофилизированных реагентов имеет разработка программы лиофильного высушивания. В результате поиска оптимальной программы лиофильного высушивания была выбрана следующая технология процесса:

- в ручном режиме проводили предварительное охлаждение полок рабочей камеры до температуры −35 °С. Время охлаждения полок до этой температуры составило примерно 30 мин. Затем в охлажденную камеру помещали флаконы с расфасованным жидким реагентом № 1;
- задавали температуру охлаждения конденсора до –70 °С и значение вакуума при высушивании – 100 мТор;
- задавали шаги цикла высушивания, которые представлены в таблице 1, и запускали программу. Время высушивания составляло примерно 22 ч;

 после окончания цикла высушивания рабочую камеру заполняли аргоном, который поступал в рабочую камеру через колонку с осушителем. Время сброса вакуума устанавливали 25 мин.

Таблица 1. Шаги цикла лиофилизации жидкого реагента № 1

№ шага	1	2	3	4	5	6	7	8	9
Температура, °С	-35	-25	-20	-15	-10	+0	+15	+25	+25
Длительность шага, мин	20	120	120	120	120	120	180	60	420

Как видно из приведенной программы, время выдерживания реагента при температуре -35 °C составило 20 мин. Если время замораживания будет меньше, то при включении вакуумного насоса замерзший реагент будет вытягиваться из флакона, что может привести к выбросу части продукта на поддон. При повышении температуры полок на пять градусов продукт выдерживается на каждом шаге программы по 2 ч. Ускорение этого процесса приводило к получению некачественного продукта (внешний вид лиофилизата, ухудшение растворимости лиофилизата, выброс продукта из флаконов). На стадии досушивания лиофилизата он выдерживается при температуре +25 °C в течение 7 ч. Уменьшение этого времени приводило к получению лиофилизата, содержащего большое количество влаги (более 3%), что сказывалось на сроке его хранения. Принимая во внимания все отмеченные моменты, нам удалось добиться получения лиофилизата хорошего качества. При хранении лиофилизата в течение 12 мес. ухудшения его качества не наблюдалось. Согласно программе исследования стабильности готовых лекарственных средств образцы лиофилизатов, отобранные для изучения стабильности, хранились в товарной упаковке (флаконы с лиофилизатом, укупоренные пробками резиновыми и обжатые колпачками алюминиевыми в контурной ячейковой упаковке из пленки поливинилхлоридной в пачке картонной) в холодильнике при температуре от 2 °C до 10 °C. Контроль качества лиофилизатов проводили каждые три месяца в течение 15 месяцев по следующим параметрам: растворимость лиофилизата в 1,0 мл 0,9% раствора натрия хлорида изотонического для инъекций (ГФ XIII, ОФС.1.2.1.0005.15), прозрачность и цветность раствора лиофилизата (ГФ XIII, ОФС.1.2.1.0007.15 и ОФС.1.2.1.0006.15), содержание $SnCl_2 \cdot 2H_2O$, содержание аскорбиновой кислоты, рН раствора лиофилизата (ГФ XIII, ОФС.1.2.1.0004.15). Результаты исследования стабильности трех серий лиофилизатов отечественного производства представлены в таблице 2.

Таблица 2.

Результаты контроля качества лиофилизатов отечественного производства в заявленном виде товарной упаковки в течение срока годности

Параметр	Норма, мг/флакон	Срок хранения, мес.	Серия 1	Серия 2	Серия 3	
Содержание олова дихлорида дигидрата, мг/флакон	от 3,6 до 4,4	0	4,0±0,09	4,4±0,09	3,9±0,13	
		3	4,0±0,08	4,0±0,09	4,1±0,08	
		6	4,1±0,10	3,9±0,12	4,2±0,10	
		9	4,2±0,07	4,1±0,09	4,4±0,08	
		12	4,1±0,11	4,0±0,11	4,1±0,12	
		15	4,3±0,10	4,2±0,10	4,4±0,09	
Содержание аскорбиновой кислоты, мг/флакон	от 27,0 до 34,0	0	31,9±0,7	31,5±0,1	29,3±0,8	
		3	30,8±0,5	33,2±0,5	30,3±0,7	
		6	31,4±0,3	32,7±0,6	28,0±0,2	
		9	28,3±0,5	29,0±0,8	28,7±0,2	
		12	29,2±0,7	29,5±0,2	30,7±0,5	
		15	30,1±0,2	31,1±0,3	30,1±0,8	
рН раствора	от 3,3 до 4,3	0	4,3	3,8	3,9	
		3	4,2	3,5	3,8	
		6	3,9	3,7	4,0	
		9	4,1	3,5	4,0	
		12	4,0	3,6	4,1	
		15	4,1	3,7	4,1	

В ходе лиофилизации содержание компонентов во флаконе может измениться, поэтому после окончания процесса необходимо проводить их количест-

венное определение, используя достоверные и надежные методы анализа компонентов, особенно для определения двухвалентного олова в смеси используемых реактивов. Из множества методов, которые применяются для определения двухвалентного олова в различных соединениях, лишь некоторые могут быть использованы для количественного определения Sn(II) в лиофилизированных реагентах, так как в состав этих реагентов входят различные лиганды, стабилизаторы, антиоксиданты и другие аналогичные соединения, мешающие определению или замедляющие развитие окраски. Так, йодометрическое титрование, которое успешно применяется для определения содержания двухвалентного олова в исходном реактиве, совершенно неприемлемо для определения Sn(II) в лиофилизированных реагентах. Пока только методы спектрофотометрического определения и полярографические методы могут успешно использоваться для определения двухвалентного олова в наборах реагентов, однако последние более капризны и трудоемки.

Определение содержания олова дихлорида дигидрата в лиофилизированном реагенте № 1 проводили спектрофотометрическим методом по калибровочному графику, представленному на рисунке 2.

Определение содержания аскорбиновой кислоты в лиофилизированном реагенте № 1 проводили спектрофотометрическим методом по калибровочному графику, представленному на рисунке 3.

Результаты определения содержания олова дихлорида дигидрата и аскорбиновой кислоты в лиофилизированных реагентах № 1 отечественного производства представлены в таблице 2. Значения рН раствора лиофилизированного реагента № 1 после его

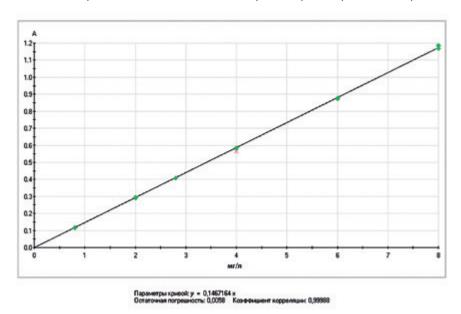


Рисунок 2. Калибровочный график для определения содержания Sn(II) в лиофилизированном реагенте № 1

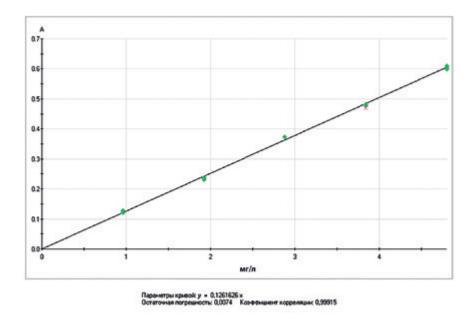


Рисунок 3. Калибровочный график для определения содержания аскорбиновой кислоты в лиофилизированном реагенте № 1

растворения в 1,0 мл 0,9% раствора натрия хлорида изотонического для инъекций также представлены в таблице 2.

Как видно из таблицы 2, величина рН и содержание основных компонентов в лиофилизированном реагенте № 1 отечественного производства соответствуют установленной норме. Разработанная методика количественного определения содержания олова дихлорида дигидрата позволяет проводить определение с относительной погрешностью 6,5% в диапазоне измерений 3,6-4,4 мг/флакон, при этом предел повторяемости составляет 3,6%, а предел воспроизводимости – 4,3% при доверительной вероятности Р=0,95. Разработанная методика количественного определения содержания аскорбиновой кислоты позволяет проводить определение с относительной погрешностью 1,3% в диапазоне измерений 27,0-34,0 мг/флакон, при этом предел повторяемости составляет 5,4%, а предел воспроизводимости – 6,5% при доверительной вероятности Р=0,95.

Основные примеси, которые могут образовываться при приготовлении РФЛП, меченного рением-188 и содержащего липиодол, – это невосстановленный перренат натрия, коллоидная форма восстановленного рения-188 и другие примеси – продукты неполного взаимодействия рения-188 с комплексообразователем. В хроматографической системе, которая была использована нами для определения РХЧ, комплекс 188 Re с дитиобензоатом имеет R_f =0,7, а перренат натрия, 188 Re, и гидролизованный восстановленный рений-188 остаются на старте (R_f =0). На рисунке 4 представлена типичная хроматограмма РФЛП, меченного рением-188 и содержащего липиодол.

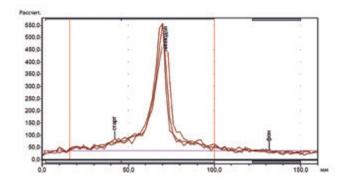


Рисунок 4. Радиохроматограммы определения РХЧ РФЛП, меченного рением-188 и содержащего липиодол

Результаты определения РХЧ и измерения рН лекарственных препаратов с рением-188, приготовленных с использованием лиофилизированных реагентов № 1 отечественного и импортного производства, представлены в таблице 3.

Как видно из таблицы 3, очевидной разницы по параметрам «РХЧ» и «рН» не наблюдается. Относительная погрешность методики определения РХЧ составила 5,6%.

ЗАКЛЮЧЕНИЕ

В ходе данной работы была освоена технология получения радиофармацевтического лекарственного препарата, меченного рением-188 и содержащего липиодол, и отработан способ получения лиофилизированного реагента № 1 отечественного производства. Разработанные методики количественного определения содержания олова дихлорида дигидрата и аскорбиновой кислоты позволяют надежно и достоверно

Таблица 3.

Результаты определения РХЧ и измерения рН лекарственных препаратов, меченных рением-188 и содержащих липиодол, приготовленных с использованием лиофилизированных реагентов № 1 отечественного и импортного производства

		D	Объемная	РХ			
		Лиофилизированный реагент № 2	активность препарата, МБк/мл	Сразу после приготовления	Через 24 ч после приготовления	рН	
Лиофилизированный реагент № 1 отечественного производства	Серия 1	Имп.	162,7	92,4±0,5	90,2±0,8	4,9	
	Серия 2		163,3	97,2±0,5	95,7±0,8	4,0	
Лиофилизированный реагент № 1 из набора реагентов Lipo-SSS, (IZOTOP, Institute of Isotopes Co., Будапешт, Венгрия)	Серия 1		162,7	95,4±1,3	92,2±1,1	4,0	
	Серия 2		163,3	96,6±0,5	95,0±1,1	4,1	

проводить анализ лиофилизированного реагента. Результаты определения РХЧ радиофармацевтического лекарственного препарата, меченного рением-188 и содержащего липиодол, показали, что для синтеза РФЛП можно использовать лиофилизированный реагент № 1 как импортного, так и отечественного производства.

Данная работа была выполнена в рамках государственного контракта № 13411.1008799.13.191 «Трансфер зарубежных разработок радиофармацевтического лекарственного препарата на основе липиодола, меченного рением-188, для внутриартериальной радионуклидной терапии гепатоцеллюлярной карциномы и проведение его доклинических и клинических исследований» в рамках федеральной целевой программы «Развитие фармацевтической и медицинской промышленности Российской Федерации на период до 2020 года и дальнейшую перспективу».

ЛИТЕРАТУРА

- E. Garin, P. Bourguet. Nuclear Medicine in Clinical Diagnosis and Treatment, 3rd Ed. / Ed. by P.J. Ell and S.S. Gambhir. – Edinburgh: Churchill-Livingstone, 2004. P. 473–483.
- K. Bacher, B. Lambert, F. De Vos et al. Patients dosimetry after ¹⁸⁸Re-Lipiodol therapy // Eur. J. Nucl. Med. 2003. V. 30. Suppl. 2. P. 219.
- B. Lambert, K. Bacher, F. Gemmel et al. ¹⁸⁸Re-Lipiodol for locoregional treatment of hepatocellular carcinoma: a phase I study // Eur. J. Nucl. Med. 2003. V. 30. Suppl. 2. P. 219.
- P. Bernal, M. Osorio, C. Gutierrez et al. Treatment of liver cancer with Rhenium-188 Lipiodol: Colombian Experience // Eur. J. Nucl. Med. 2002. V. 29. Suppl. 1. P. 180.
- S.L. Chen. Treatment of patients with advanced hepatocellular carcinoma with transarterial ¹⁸⁸Re-lipiodol // Eur. J. Nucl. Med. 2007. V. 34. Suppl. 2. P. 188–189.
- K. De Ruyck, A. Vral, B. Lambert et al. Comparison of the cytotoxic effect of ¹³¹I-lipiodol therapy and ¹⁸⁸Re-lipiodol therapy in hepatocellular cancer patients // Eur. J. Nucl. Med. 2003. V. 30. Suppl. 2. P. 343.
- K. Nakakuma et al. Studies on anticancer treatment with an oily anticancer drug injected into the ligated hepatic artery for hepatic cancer // Nichidoku Iho. 1979. V. 24. P. 675–682.

- 8. H. Ohishi et al. Hepatocellular carcinoma detected by iodized oil. Use of anticancer agents // Radiology. 1985. V. 154. P. 25–29.
- 9. Патент № 2543342 С2, МПК А61К 103/10. Композиция для лечения рака печени у людей на основе рения-188 и способ получения такой композиции / Н. Нуарэ, Э. Гарин, Н. Лепаръер, В. Ардиссон; патентообладатель Эколь Националь Суперъер Де Хими Де Реннс, Сентр Ожен Маркуа, Университет де Реннс 1 (Франция). № 2012134282/15, заявл. 18.02.2011; конвенционный приоретет № 1000681, FR от 18.02.2010; опубл. 27.02.2015 Бюл. № 6.
- N. Lepareur, V. Ardisson, N. Noiret, E. Garin. ¹⁸⁸Re-SSS/Lipiodol: Development of a Potential Treatment for HCC from Bench to Bedside // Int. J. Mol. Imaging. 2012. Article ID 278306, 9 p., doi:10.1155/2012/278306.
- 11. Патент WO 2011/101436 A1, МПК A61K 51/04 Composition for treating liver cancer in human based on rhenium-188 and method for imaging such composition / N. Noiret, E. Garin, N. Lepareur. Опубл. 25.08.2011.
- 12. Technical report series N 470: Therapeutic radionuclide generators: ${}^{90}\text{Sr}/{}^{90}\text{Y}$ and ${}^{188}\text{W}/{}^{188}\text{Re}$ generators. Vienna: IAEA, 2009. 249 p.
- В.Б. Спиваковский. Аналитическая химия олова. М.: Наука, 1975. 252 с.
- Ф. Умланд, А. Янсен, Д. Тириг, Г. Вюнш. Комплексные соединения в аналитической химии. Теория и практика применения. М.: Мир, 1975. 536 с.
- 15. European Pharmacopoeia. 7th ed. 2010.