УДК 615.074

1 – ГБОУ ВПО «Санкт-Петербургская государственная химико-фармацевтическая академия», 197376, Россия, г. Санкт-Петербург, ул. Профессора Попова, 14

2 – ООО «Научнопроизводственная фирма «КЕМ», 188663, Россия, Ленинградская обл., Всеволожский р-н, пос. Кузьмоловский, ст. Капитолово, корп. 142

1 – SBEI HPE Saint-Petersburg State Chemical-Pharmaceutical Academy, 14, Professor Popov str., St.-Petersburg, 197376, Russia

2 – LLC «Scientificproduction firm «KEM», building 142, railway station Kapitolovo, Kuzmolovsky village, Vsevolozhsk district, Leningrad region, 188663, Russia

* адресат для переписки: E-mail: bolshakova-maria@yandex.ru

РАЗРАБОТКА И ВАЛИДАЦИЯ МЕТОДА ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВЕННОГО СОДЕРЖАНИЯ 5-[2-(3-ТРЕТ-БУТИЛАМИНО-2-ГИДРОКСИПРОПОКСИ)ФЕНОКСИМЕТИЛ]-3-МЕТИЛ-1,2,4-ОКСАДИАЗОЛА ГИДРОХЛОРИДА В ГЛАЗНЫХ ЛЕКАРСТВЕННЫХ ПЛЕНКАХ ДЛЯ ЛЕЧЕНИЯ ОТКРЫТОУГОЛЬНОЙ ГЛАУКОМЫ

М.В. Большакова 1* , М.А. Буракова 1 , Б.О. Алексеев 2

Резюме. Разработана методика количественного определения 5-[2-(3-трет-бутиламино-2-гидроксипропокси) феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида в лекарственных полимерных пленках методом УФ-спектрометрии. Методика была валидирована по таким показателям, как правильность, специфичность, аналитическая область, линейность и сходимость. Методика может быть использована для количественного определения 5-[2-(3-трет-бутиламино-2-гидроксипропокси)феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида в лекарственных полимерных пленках.

Ключевые слова: валидация, количественное определение, лекарственные пленки, УФ-спектрометрия.

DEVELOPMENT AND VALIDATION OF THE METHOD FOR DETERMINING THE QUANTITATIVE CONTENT 5-[2-(3-TRET-BUTYLAMINO-2-HYDROXYPROPOXY)PHENOXYMETHYL]-3-METHYL-1,2,4-OXADIAZOLE HYDROCHLORIDE IN OCULAR DRUG FILMS FOR THE TREATMENT OF OPEN-ANGLE GLAUCOMA

M.V. Bolshakova^{1*}, M.A. Burakova¹, B.O. Alekseev²

Abstract. Developed method for the quantitative determination of 5-[2-(3-tret-butylamino-2-hydroxypropoxy) phenoxymethyl]-3-methyl-1,2,4-oxadiazole hydrochloride in polymer drug films by UV-spectrometry. The method was validated by indicators such as accuracy, specificity, analytical area, the linearity and convergence. The method can be used for the quantitative determination of 5-[2-(3-tret-butylamino-2-hydroxypropoxy)phenoxymethyl]-3-methyl-1,2,4-oxadiazole hydrochloride in polymer drug films.

Keywords: validation, quantification, drug films, UV-spectrometry.

ВВЕДЕНИЕ

Глаукома – хроническое заболевание, характеризующееся повышением внутриглазного давления и ухудшением зрительных функций. По данным ВОЗ, глаукома составляет около 4% всех глазных заболеваний.

Основная задача лечения глаукомы заключается в сохранении зрительных функций и качества жизни пациента с минимальными побочными эффектами приемлемой терапии и при приемлемой стоимости используемых препаратов [6].

Для лечения глаукомы используют неселективный α,β-адреноблокатор 5-[2-(3-трет-бутиламино-2-гидроксипропокси) феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорид. Он способствует угнетению продукции внутриглазной жидкости и снижению внутриглазного давления.

В настоящее время данный препарат применяется в форме глазных капель,

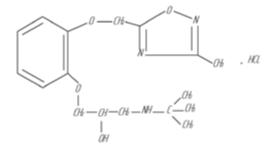


Рисунок 1. Структурная формула 5-[2-(3-третбутиламино-2-гидроксипропокси)феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида

действие которых кратковременно. Возникает необходимость частого введения препарата. Глазные капли вызывают вымывание лизоцима, содержащегося в слезной жидкости, что может привести к возникновению инфекции. В связи с этим представляется рациональной разработка других лекарственных форм, например глазных полимерных пленок пролонгированного действия. Также является необходимой

разработка новых, более совершенных методик контроля качества готовых лекарственных форм.

В аналитической практике количественное определение 5-[2-(3-трет-бутиламино-2-гидроксипропокси)феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида может проводиться титрометрически в среде неводных растворителей. Однако данный метод является трудоемким, длительным и требует больших объемов веществ для анализа.

Таким образом, было решено использовать ультрафиолетовую спектрофотометрию. Этот метод наиболее удобен, экономичен, не требует больших затрат реагентов.

МАТЕРИАЛЫ И МЕТОДЫ

Оборудование

Исследование проводили с помощью УФ-спектрофотометра ПЭ-5400УФ (ООО «Экрос», Россия). Взятие навесок осуществляли с помощью весов аналитических HTR-220CE [Shinko (Vibra), Япония].

Аналитические весы Vibra HTR-220CE

Реактивы и растворы

5-[2-(3-трет-бутиламино-2- гидроксипропокси)феноксиметил]-3-метил- 1,2,4-оксадиазола гидрохлорид	000560
Глазные полимерные пленки	-
Вода бидистиллированная	ГОСТ 6709-72
0,1 M раствор кислоты хлористоводородной	ГОСТ 25794.1-83

Объект исследования

В качестве объекта анализа использовали глазные лекарственные пленки с 5-[2-(3-трет-бутиламино-2-гидроксипропокси)феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлоридом. Данные пленки были изготовлены ООО «НПФ «КЕМ», Россия.

Построение калибровочной кривой

Для выявления возможностей количественного определения активной фармацевтической субстанции в пленках УФ-спектрофотометрическим методом изучали зависимость оптической плотности растворов пленок от длины волны.

С этой целью готовили 0,01%-й раствор субстанции в 0,1 М растворе кислоты хлористоводородной. Для этого 0,01 г вещества растворяли в 100 мл кислоты хлористоводородной и измеряли оптическую плотность на спектрофотометре ПЭ-5400УФ в области от 250 до 300 нм в кварцевой кювете с толщиной рабочего слоя 10 мм. В качестве раствора сравнения использовали 0,1 М раствор кислоты хлористоводородной. Спектр 5-[2-(3-трет-бутиламино-2-гидроксипропокси) феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида имеет максимум поглощения при длине волны 272 нм.

Спектр поглощения 5-[2-(3-трет-бутиламино-2-гидроксипропокси)феноксиметил]-3-метил-1,2,4оксадиазола гидрохлорида показан на рисунке 2.

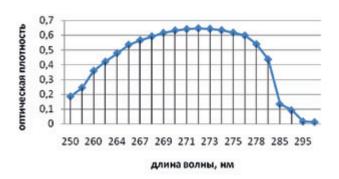


Рисунок 2. Спектр поглощения 5-[2-(3-трет-бутиламино-2-гидроксипропокси)феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида

Для выявления прямолинейного участка зависимости оптической плотности от концентрации действующего вещества готовили серию стандартных растворов с содержанием от 0,001 до 0,01% 5-[2-(3-трет-бутиламино-2-гидроксипропокси) феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида в 0,1 М растворе кислоты хлористоводородной и измеряли оптическую плотность каждого раствора в кювете с толщиной рабочего слоя 10 мм при длине волны 272 нм.

Расчетные данные калибровочного графика для 5-[2-(3-трет-бутиламино-2-гидроксипропокси)феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида представлены в таблице 1.

Показана прямо пропорциональная зависимость оптической плотности от концентрации в интервале от 0,001 до 0,010%.

Методом наименьших квадратов рассчитывали уравнение калибровочного графика для 5-[2-(3-третбутиламино-2-гидроксипропокси)феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида:

$$D = 64,15 \cdot C - 0,009,$$

где D — оптическая плотность раствора, C — концентрация исследуемого раствора, мг/мл.

Таблица 1.

Данные для построения калибровочного графика 5-[2-(3-трет-бутиламино-2-гидроксипропокси)феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида

№ п/п	С	D	C·D	C ²	D ²
1	0,001	0,072	0,000072	0,000001	0,005184
2	0,002	0,111	0,000222	0,000004	0,012321
3	0,003	0,175	0,000525	0,000009	0,030625
4	0,004	0,244	0,000976	0,000016	0,059536
5	0,005	0,316	0,00158	0,000025	0,099856
6	0,006	0,373	0,002238	0,000036	0,139129
7	0,007	0,436	0,003052	0,000049	0,190096
8	0,008	0,497	0,003976	0,000064	0,247009
9	0,009	0,566	0,005094	0,000081	0,320356
10	0,01	0,645	0,00645	0,0001	0,416025
Сумма	0,055	3,435	0,024185	0,000385	1,520137

Методика количественного определения 5-[2-(3-трет-бутиламино-2-гидроксипропок-си)феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида в полимерных пленках

Около 0,1 г (точная навеска) глазных пленок помещают в мерную колбу вместимостью 100 мл, прибавляют 5 мл воды, осторожно перемешивают при температуре 30-35 °С до полного растворения пробы. Затем доводят объем раствора 0,1 М раствором кислоты хлористоводородистой до метки и перемешивают.

Измеряют оптическую плотность полученного раствора на спектрофотометре в максимуме поглощения при длине волны 272 нм в кювете с толщиной слоя 10 мм. В качестве раствора стандартного образца используют 0,01% раствор стандартного образца (СО) 5-[2-(3-трет-бутиламино-2-гидроксипропокси) феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида. Раствор сравнения – 0,1 М раствор кислоты хлористоводородистой.

Содержание 5-[2-(3-трет-бутиламино-2-гидрокси-пропокси)феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида в процентах (X) вычисляют по формуле:

$$X = \frac{D_1 \times a_0 \times C}{D_0 \times a_1 \times (100 - W)},$$

где D_0 , D_1 – оптические плотности раствора СО 5-[2-(3-трет-бутиламино-2-гидроксипропокси) феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида и испытуемого раствора, соответственно; a_0 ,

 a_1 — навески СО 5-[2-(3-трет-бутиламино-2-гидроксипропокси)феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида в растворе А и испытуемой лекарственной форме в граммах, соответственно; C — содержание 5-[2-(3-трет-бутиламино-2-гидроксипропокси) феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида в СО, в процентах; W — содержание воды в пленках в процентах.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Валидация методики

Цель валидации заключалась в том, чтобы документально подтвердить экспериментальное доказательство пригодности данной методики для определения содержания 5-[2-(3-трет-бутиламино-2-гидроксипропокси)феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида в глазных лекарственных пленках для лечения глаукомы для получения достоверных и воспроизводимых результатов при определении показателей качества данной лекарственной формы.

Процедуру валидации методики количественного определения основного вещества осуществляли по следующим параметрам: специфичность, аналитическая область, линейность, правильность, сходимость, внутрилабораторная сходимость [1].

Специфичность

Специфичность аналитической методики – это способность методики однозначно оценивать определяемое вещество в присутствии сопутствующих компонентов [3].

Для определения специфичности были получены модельные пленки без действующего вещества и с разными концентрациями 5-[2-(3-трет-бутиламино-2-гидроксипропокси)феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида.

Установлено, что оптическая плотность растворов пленок, не содержащих действующего вещества, в изучаемой области спектра составляет от 0,008 до 0,018, в то время как оптическая плотность растворов пленок с действующим веществом при 272 нм находится в пределах 0,150—0,350.

Правильность

Правильность оценивается для методики количественного определения по результатам трех определений для каждого из трех уровней определяемых величин (нижнего, среднего и верхнего), лежащих в пределах аналитической области методики.

Валидируемая методика признается правильной, если значения, принимаемые за истинные, лежат внутри доверительных интервалов соответствующих средних результатов анализов, полученных экспериментально по данной методике [3].

Контроль качества химико-фармацевтических препаратов

Выражением правильности (П_р) является отношение, рассчитываемое для каждого анализа:

$$\Pi_p = \frac{X}{\mu} \cdot 100\%,$$

где X — количество 5-[2-(3-трет-бутиламино-2-гидроксипропокси) феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида, определяемое по методике, μ — истинное значение количества 5-[2-(3-трет-бутиламино-2-гидроксипропокси) феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида.

Также определяют граничные значения доверительного интервала результата отдельного определения правильности $(\overline{\Pi}_p \pm \Delta \overline{\Pi}_p)$ при заданной вероятности (P = 95%).

Правильность методики определялась анализом пяти модельных навесок рабочего стандартного образца (РСО) с точно известным содержанием 5-[2-(3-третбутиламино-2-гидроксипропокси)феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида.

Исходя из результатов, представленных в таблице 2, можно сделать вывод о том, что полученные данные граничных значений доверительного интервала результата отдельного определения правильности

 $(\overline{\Pi}_p \pm \Delta \overline{\Pi}_p)$ находятся в интервале 98,0–102,0%, что, в свою очередь, лежит в аналитической области методики, и, соответственно, методика может считаться правильной.

Аналитическая область

Тест проводился одновременно с определением линейности. Аналитическая область методики устанавливалась в интервале от 80% до 120% по экспериментальным данным, находящимся в пределах линейной зависимости, которая описывается линейным уравнением у = 1,56х – 0,001 с коэффициентом корреляции r=0,997. Исходя из данных, представленных в таблице 3, можно сделать вывод, что границы аналитической области с учетом доверительного интервала не выходят за пределы 80–120%.

Линейность

Критерий приемлемости:

- а) пропорциональность (линейная зависимость) оптической плотности испытуемого раствора от массы навески глазных пленок, выраженная уравнением y = a + bx;
- б) коэффициент корреляции г≥0,95 (неслучайность линейной связи между x и y).

Таблица 2.

Результаты проверки правильности

Номер опыта	Масса навески РСО, г	Оптическя плотность раствора, D	Содержание вещества, %	Истинное содержание вещества, %	Правильность, Пр, %	Среднее значение прав <u>и</u> льности, Пр [,] %	Стандартное отклонение, S, %	Граничные значения доверительного интервала отдельного определения правильности
	0,0125	0,580	98,21		100,19			
	0,0136	0,630	98,11	98,02	100,09			100,12±0,08
1	0,0110	0,609	98,19		100,17	100,12	0,082	
	0,0179	0,829	98,01		99,99			
	0,0142	0,659	98,17		100,15			
	0,0166	0,948	100,21		100,25			
	0,0136	0,777	100,25		100,29			
2	0,0117	0,676	101,39	99,96	101,43	100,45	0,304	100,45±0,38
	0,0165	0,941	100,07		100,11			
	0,0129	0,736	100,12		100,16			
	0,0185	0,978	102,11		100,11			
	0,0145	0,991 102,08		100,09				
3	0,0134	0,915	101,97	101,99	99,98	100,03	0,710	100,03±0,71
	0,0107	0,730	101,95		99,96			
	0,0100	0,683	102,01		100,02			

Таблица 3.

Результаты определения аналитической области

Процент от номинального значения	Масса навески, г	Содержание вещества в пленках, %	Расчетное содержание вещества в пленках, %	Ор, %	Среднее значение Ор, %	S _R , %	Доверительный интервал среднего значения Ор, %
1. (≈50%)	0,0566	2,604	2,6081	99,84			
2. (≈80%)	0,0699	2,787	2,7900	99,89	00.07	0.057	0.001
3. (≈120%)	0,1276	2,737	2,7423	99,81	99,87	0,057	0,091
4. (≈150%)	0,1518	2,705	2,7067	99,94			

Таблица 4.

Результаты проверки линейности

Номер опыта	Масса навески, г	Процент от номинального значения	Оптическая плотность испытуемого раствора	Содержание вещества в пленках, %	X2	y2	XX	ΣχΣ	(∑x)²	(∑y)²
1	0,0566	56,6	0,084	2,604	0,0032	0,0071	0,0048			
2	0,0699	69,9	0,111	2,787	0,0049	0,0123	0,0078			
3	0,1070	107,0	0,167	2,739	0,0114	0,0279	0,0179	0,4078	0,2631	0,6320
4	0,1276	127,6	0,199	2,737	0,0163	0,0396	0,0254			
5	0,1518	151,8	0,234	2,705	0,0230	0,0548	0,0355			
	∑x=0,5129		Σy=0,795		∑x²=0,0589	Σy ² =0,1416	Σxy=0,0913			

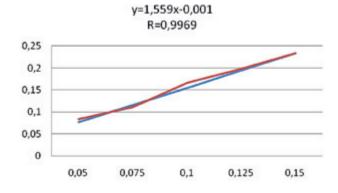


Рисунок 3. Зависимость оптической плотности 5-[2-(3-третбутиламино-2-гидроксипропокси)феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида от его концентрации

Для проверки линейности проводили анализ пяти модельных навесок в диапазоне от 50 до 150% от номинальной навески.

Линейная зависимость оптической плотности испытуемого раствора от массы навески выражается уравнением:

$$y = 1,559 \cdot x - 0,001$$
.

Коэффициент корреляции R=0,9969.

Полученные значения оптической плотности в выбранном диапазоне линейно зависят от концентрации. Коэффициент корреляции r>0,95, что говорит о неслучайности линейной связи между данными величинами.

Сходимость

Определение сходимости проводилось одним и тем же химиком при одних и тех же условиях с одними и теми же реактивами в течение короткого промежутка времени. Относительное стандартное отклонение должно быть менее 2,0%.

Проводили пять определений для навесок, соответствующих номинальному значению.

По полученным результатам находили среднее выборки (\bar{X}) , стандартное отклонение (S) и относительное стандартное отклонение в % (S_R).

Исходя из результатов, представленных в таблице 4, относительное стандартное отклонение 0,6972% удовлетворяет требованию $S_R \le 2,0\%$.

Контроль качества химико-фармацевтических препаратов

Внутрилабораторная сходимость

Определение внутрилабораторной сходимости проводилось разными аналитиками на разных пробах субстанции с интервалом в два дня.

Таблица 5. Результаты проверки сходимости методики

Номер опыта	Масса навески, г	Оптическая плотность испытуемого раствора	Содержание вещества в пленках, %	Среднее значе- ние содержания вещества в пленках, %	% 'S	S _R , %
1	0,1072	0,169	2,766			
2	0,1015	0,159	2,749			
3	0,1036	0,161	2,727	2,739	0,0191	0,6972
4	0,1046	0,162	2,718			
5	0,1065	0,166	2,735			

- 1. Стандартные отклонения, полученные разными аналитиками, должны быть эквивалентны. Об этом свидетельствует следующее условие: вычисленное значение критерия Фишера (F) должно быть меньше или равно его табличному значению F (P, f₁, f₂), найденному при вероятности P=99%, F≤F (P, f₁, f₂).
- 2. Расчетное значение критерия Стьюдента (t) должно быть меньше табличного.

Результаты проверки внутрилабораторной точности методики представлены в таблице 5 и 6.

Таблица 6.

Результаты первого аналитика

Номер опыта	Масса навески, г	Оптическая плотность раствора, D	Содержание вещества, %	Среднее значение содержания вещества, %	%'S	S _R , %
1	0,1023	0,161	2,762			
2	0,1086	0,172	2,779			
3	0,1041	0,160	2,697	2,7501	0,0352	1,278
4	0,1048	0,166	2,779			
5	0,1085	0,169	2,733			

Табличное значение критерия Фишера: $F(P, f_1, f_2) = 5,05$,

2,783 < 5,05.

Табличное значение критерия Стьюдента: $t (P=95\%, f=m_1+m_2-2) = 2,2281.$

Полученное значение 0,5175 < 2,2281.

Можно сделать заключение с вероятностью 95% о статистической незначимости различия средних результатов анализа.

Таблица 7.

Результаты второго аналитика

Номер опыта	Масса навески, г	Оптическая плотность раствора, D	Содержание вещества, %	Среднее значение содержания вещества, %	% 'S	SR, %
1	0,1012	0,158	2,740			
2	0,1087	0,172	2,777			
3	0,1083	0,168	2,722	2,7406	0,0211	0,772
4	0,1022	0,159	2,730			
5	0,1001	0,156	2,735			

ЗАКЛЮЧЕНИЕ

Разработанная методика количественного определения 5-[2-(3-трет-бутиламино-2-гидроксипропокси) феноксиметил]-3-метил-1,2,4-оксадиазола гидрохлорида методом УФ-спектроскопии была валидирована по основным параметрам, что доказывает ее возможное применение для количественной оценки содержания активной фармацевтической субстанции в полимерных лекарственных пленках.

ЛИТЕРАТУРА

- 1. В.В. Береговых, Н.В. Пятигорская, В.В. Беляев, Ж.И. Аладышева, А.П. Мешковский. Валидация в производстве лекарственных средств. М.: Русский Врач, 2010. 286 с.
- 2. Приказ Минпромторга России от 14.06.2013 № 916 «Об утверждении Правил организации производства и контроля качества лекарственных средств». М. 290 с.
- 3. Государственная фармакопея Российской Федерации. 13-е изд. Т. 1. М. 2015. 1470 с.
- 4. М.Д. Машковский. Лекарственные средства. 16-е изд. М.: Новая волна, 2012. 1216 с.
- 5. МУ 3.3.2.1886-04. Методические указания «Валидация методов контроля химических и физикохимических показателей качества МИБП: организация, порядок проведения и представление результатов». М.: Федеральный центр Госсанэпиднадзора Минздрава России, 2004. 38 с.
- б. Национальное руководство по глаукоме / Под ред. Е.А. Егорова, Ю.С. Астахова, А.Г. Щуко. – М.: Дом печати «Столичный бизнес», 2008. 138 с.
- 7. Регистр лекарственных средств России: РЛС. Энциклопедия лекарств. URL: http://www.rlsnet.ru/ (дата обращения 04.02.2016).