Preview

Разработка и регистрация лекарственных средств

Расширенный поиск

Биомедицинское применение наночастиц серебра (обзор)

https://doi.org/10.33380/2305-2066-2021-10-3-176-187

Полный текст:

Аннотация

Введение. Наночастицы серебра, обладая уникальными физико-химическими свойствами, могут применяться для диагностики и лечения различного рода инфекций, онкологических заболеваний, а также доставки лекарственных средств. В обзоре представлен анализ научной литературы по применению наночастиц серебра в биомедицинских целях.

Текст. В обзоре рассмотрены перспективы применения наночастиц серебра в лечении онкологических заболеваний в качестве носителя лекарственных средств, а также непосредственного проявления ими цитотоксического эффекта на раковые клетки. Также проанализированы области применения наночастиц серебра для придания или усиления антибактериальных эффектов перевязочных и стоматологических материалов. Рассмотрен механизм действия наночастиц серебра в отношении вирусов. В материале представлено применение в биомедицинских целях композиционных материалов, содержащих наночастицы серебра.

Заключение. На основании проведенного авторами анализа литературных данных показаны перспективы применения достижений нанотехнологии в медицине.

Об авторах

Д. Т. Реджепов
Института биохимической технологии и нанотехнологии РУДН (ИБХТН)
Россия

Реджепов Довлет Таганович.

117198, Москва, ул. Миклухо-Маклая, д. 10/2.



А. А. Водяшкин
Института биохимической технологии и нанотехнологии РУДН (ИБХТН)
Россия

117198, Москва, ул. Миклухо-Маклая, д. 10/2.



А. В. Сергородцева
Института биохимической технологии и нанотехнологии РУДН (ИБХТН)
Россия

117198, Москва, ул. Миклухо-Маклая, д. 10/2.



Я. М. Станишевский
Института биохимической технологии и нанотехнологии РУДН (ИБХТН)
Россия

117198, Москва, ул. Миклухо-Маклая, д. 10/2.



Список литературы

1. Abadeer N. S., Murphy C. J. Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles. Journal of Physical Chemistry C. 2016;120(9):4691-4716. DOI: 10.1021/acs.jpcc.5b11232.

2. Daraee H., Eatemadi A., Abbasi E., Aval S.F., Kouhi M., Akbarza-deh A. Application of gold nanoparticles in biomedical and drug delivery. Artificial Cells, Nanomedicine, and Biotechnology. 2016;44(1):410-422. DOI: 10.3109/21691401.2014.955107.

3. Malekzadeh M., Halali M. Production of silver nanoparticles by electromagnetic levitation gas condensation. Chemical Engineering Journal. 2011;168(1):441-445. DOI: 10.1016/j.cej.2010.12.081.

4. Tsuji T., Iryo K., Watanabe N., Tsuji M. Preparation of silver nanoparticles by laser ablation in solution: Influence of laser wavelength on particle size. Applied Surface Science. 2002;202(1-2):80-85. DOI: 10.1016/S0169-4332(02)00936-4.

5. Dong X., Ji X., Wu H., Zhao L., Li J., Yang W. Shape control of silver nanoparticles by stepwise citrate reduction. The Journal of Physical Chemistry C. 2009;113(16):6573-6576. DOI: 10.1021/jp900775b.

6. Ahlawat D. S., Kumari R., Rachna, Yadav I. Synthesis and characterization of sol-gel prepared silver nanoparticles. International Journal of Nanoscience. 2014;13(1). DOI: 10.1142/S0219581X14500045.

7. Van Dong P., Ha C. H., Binh L. T., Kasbohm J. Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. International Nano Letters. 2012;2(1):1-9. DOI: 10.1186/2228-5326-2-9.

8. Nourafkan E., Alamdari A. Study of effective parameters in silver nanoparticle synthesis through method of reverse microemulsion. Journal of Industrial and Engineering Chemistry. 2014;20(5):3639-3645. DOI: 10.1016/j.jiec.2013.12.059.

9. Feroze N., Arshad B., Younas M., Afridi M. I., Saqib S., Ayaz A. Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microscopy Research and Technique. 2020;83(1):72-80. DOI: 10.1002/jemt.23390.

10. Singh R., Shedbalkar U.U., Wadhwani S. A., Chopade B. A. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Applied Microbiology and Biotechnology. 2015;99(11):4579-4593. DOI: 10.1007/s00253-015-6622-1.

11. Manikandan R., Manikandan B., Raman T., Arunagirinathan K., Prabhu N.M., Basu M. J., Perumal M., Palanisamy S., Munusamy A. Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;138:120-129. DOI: 10.1016/j.saa.2014.10.043.

12. Sanli O., Dobruch J., Knowles M. A., Burger M., Alemozaffar M., Nielsen M. E., Lotan Y. Bladder cancer. Nature Reviews Disease Primers. 2017;3. DOI: 10.1038/nrdp.2017.22.

13. Tran S., DeGiovanni P.-J., Piel B., Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Clinical and Translational Medicine. 2017;6(1):44. DOI: 10.1186/s40169-017-0175-0.

14. Wang L., Shi C., Wright F. A., Guo D., Wang X., Wang D., Wojcikiewicz R. J. H., Luo J. Multifunctional telodendrimer nanocarriers restore synergy of bortezomib and doxorubicin in ovarian cancer treatment. Cancer Research. 2017;77(12):3293-3305. DOI: 10.1158/0008-5472.CAN-16-3119.

15. Murugesan K., Koroth J., Srinivasan P. P., Singh A., Mukundan S., Karki S. S., Choudhary B., Gupta C. M. Effects of green synthesised silver nanoparticles (ST06-AgNPs) using curcumin derivative (ST06) on human cervical cancer cells (HeLa) in vitro and EAC tumor bearing mice models. International Journal of Nanomedicine. 2019;14:5257-5270. DOI: 10.2147/IJN.S202404.

16. Gomathi A. C., Rajarathinam S. R. X., Sadiq A. M., Rajeshkumar S. Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. Journal of Drug Delivery Science and Technology. 2020;55:101376. DOI: 10.1016/j.jddst.2019.101376.

17. Acharya D., Satapathy S., Somu P., Parida U. K., Mishra G. Apoptotic Effect and Anticancer Activity of Biosynthesized Silver Nanoparticles from Marine Algae Chaetomorpha linum Extract Against Human Colon Cancer Cell HCT-116. Biological Trace Element Research. 2021;199(5):1812-1822. DOI: 10.1007/s12011-020-02304-7.

18. Aziz Mousavi S. M. A., Mirhosseini S. A., Panahi M. R. Sh., Hosseini H. M. Characterization of Biosynthesized Silver Nanoparticles Using Lactobacillus rhamnosus GG and its In Vitro Assessment Against Colorectal Cancer Cells. Probiotics and Antimicrobial Proteins. 2020;12(2):740-746. DOI: 10.1007/s12602-019-09530-z.

19. Ali S., Perveen S., Ali M., Jiao T., Sharma A. S., Hassan H., Devaraj S., Li H., Chen Q. Bioinspired morphology-controlled silver nanoparticles for antimicrobial application. Materials Science and Engineering: C. 2020;108:110421. DOI: 10.1016/j.msec.2019.110421.

20. He H., Cai R., Wang Y., Tao G., Guo P., Zuo H., Chen L., Liu X., Zhao P., Xia Q. Preparation and characterization of silk sericin/PVA blend film with silver nanoparticles for potential antimicrobial application. International Journal of Biological Macromolecules. 2017;104:457-464. DOI: 10.1016/j.ijbiomac.2017.06.009.

21. Kalaivani R., Maruthupandy M., Muneeswaran T., Beevi A. H., Anand M., Ramakritinan C. M., Kumaraguru A. K. Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications. Frontiers in Laboratory Medicine. 2018;2(1):30-35. DOI: 10.1016/j.flm.2018.04.002.

22. Liao S., Zhang Y., Pan X., Zhu F., Jiang C., Liu Q., Cheng Z., Dai G., Wu G., Wang L., Chen L. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. International Journal of Nanomedicine. 2019;14:1469-1487. DOI: 10.2147/IJN.S191340.

23. Qayyum S., Oves M., Khan A. U. Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles. PLOS ONE. 2017;12(8):e0181363. DOI: 10.1371/journal.pone.0181363.

24. Hajipour M. J., Fromm K. M., Ashkarran A. A., de Aberasturi D. J., de Larramendi I. R., Rojo T., Serpooshan V., Parak W. J., Mahmoudi M. Antibacterial properties of nanoparticles. Trends in Biotechnology. 2012;30(10):499-51 1. DOI: 10.1016/j.tibtech.2012.06.004.

25. Wu Yu., Yang Ya., Zhang Z., Wang Z., Zhao Ya., Sun L. A facile method to prepare size-tunable silver nanoparticles and its antibacterial mechanism. Advanced Powder Technology. 2018;29(2):407-415. DOI: 10.1016/j.apt.2017.11.028.

26. Abbas W. S., Atwan Z. W., Abdulhussein Z. R., Mahdi M. A. Preparation of silver nanoparticles as antibacterial agents through DNA damage. Materials Technology. 2019;34(14):867-879. DOI: 10.1080/10667857.2019.1639005

27. Jiang H. S., Zhang Y., Lu Z. W., Lebrun R., Gontero B., Li W. Interaction between Silver Nanoparticles and Two Dehydrogenases: Role of Thiol Groups. Small. 2019;15(27):1900860. DOI: 10.1002/smll.201900860.

28. Godoy-Gallardo M., Eckhard U., Delgado L. M., de Roo Puente Y. J. D., Hoyos-Nogues M., Gil F. J., Perez R. A. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioactive Materials. 2021;6(12):4470-4490. DOI: 10.1016/j.bioactmat.2021.04.033.

29. Yin I. X., Zhang J., Zhao I. S., Mei M. L., Li Q., Chu C. H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. International Journal of Nanomedicine. 2020;15:2555-2562. DOI: 10.2147/IJN.S246764.

30. Friedman C. M., Sandrik J. L., Heuer M. A., Rapp G. W. Composition and Mechanical Properties of Gutta-Percha Endodontic Points. Journal of Dental Research. 1975;54(5):921-925. DOI: 10.1177/00220345750540052901.

31. Mohan A., Dipallini S., Lata S., Mohanty S., Pradhan P. K., Patel P., Makkar H., Verma S. K. Oxidative stress induced antimicrobial efficacy of chitosan and silver nanoparticles coated Guttapercha for endodontic applications. Materials Today Chemistry. 2020;17:100299. DOI: 10.1016/j.mtchem.2020.100299.

32. Deng J., Ren L., Pan Ya., Gao H., Meng X. Antifungal property of acrylic denture soft liner containing silver nanoparticles synthesized in situ. Journal of Dentistry. 2021;106:103589. DOI: 10.1016/j.jdent.2021.103589.

33. Takamiya A. S., Monteiro D. R., Gorup L. F., Silva E. A., de Camargo E. R., Gomes-Filho J. E., de Oliveira S. H. P., Barbosa D. B. Biocompatible silver nanoparticles incorporated in acrylic resin for dental application inhibit Candida albicans biofilm. Materials Science and Engineering: C. 2021;118:111341. DOI: 10.1016/j.msec.2020.111341.

34. Natale L. C., Alania Y., Rodrigues M. C., Simoes A., de Souza D. N., de Lima E., Arana-Chavez V. E., Hewer T. L. R., Hiers R., Esteban-Florez F. L., Brito G. E. S., Khajotia S., Braga R. R. Synthesis and characterization of silver phosphate/calcium phosphate mixed particles capable of silver nanoparticle formation by photoreduction. Materials Science and Engineering: C. 2017;76:464-471. DOI: 10.1016/j.msec.2017.03.102.

35. Rodrigues M. C., Rolim W. R., Viana M. M., Souza T. R., Goncalves F., Tanaka C. J., Bueno-Silva B., Seabra A. B. Biogenic synthesis and antimicrobial activity of silica-coated silver nanoparticles for esthetic dental applications. Journal of Dentistry. 2020;96:103327. DOI: 10.1016/j.jdent.2020.103327.

36. Youssef M. M., El-Mansy M. N., El-Borady O. M., Hegazy E. M. Impact of biosynthesized silver nanoparticles cytotoxicity on dental pulp of albino rats (histological and immunohistochemical study). Journal of Oral Biology and Craniofacial Research. 2021;11(3):386-392. DOI: 10.1016/j.jobcr.2021.04.002.

37. AshaRani P. V., Mun G. L. K., Hande M. P., Valiyaveettil S. Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano. 2009;3(2):279-290. DOI: 10.1021/nn800596w.

38. Zhang T., Wang L., Chen Q., Chen C. Cytotoxic potential of silver nanoparticles. Yonsei Medical Journal. 2014;55(2):283-291. DOI: 10.3349/ymj.2014.55.2.283.

39. Rigo C., Ferroni L., Tocco I., Roman M., Munivrana I., Gardin C., Cairns W. R. L., Vindigni V., Azzena B., Barbante C., Zavan B. Active silver nanoparticles for wound healing. International Journal of Molecular Sciences. 2013;14(3):4817-4840. DOI: 10.3390/ijms14034817.

40. Diniz F. R., Maia R. C. A. P., Andrade L. R., Andrade L. N., Chaud M. V., da Silva C. F., Correa C. B., de Albuquerque Junior R. L. C., da Costa L. P., Shin S. R., Hassan Sh., Sanchez-Lopez E., Souto E. B., Severino P. Silver nanoparticles-composing alginate/gelatine hydrogel improves wound healing in vivo. Nanomaterials. 2020;10(2):390. DOI: 10.3390/nano10020390

41. Chen K., Wang F., Liu S., Wu X., Xu L., Zhang D. In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property. International Journal of Biological Macromolecules. 2020;148:501-509. DOI: 10.1016/j.ijbiomac.2020.01.156.

42. Veeraraghavan V.P., Periadurai N.D., Karunakaran T., Hussain S., Surapaneni K.M., Jiao X. Green synthesis of silver nanoparticles from aqueous extract of Scutellaria barbata and coating on the cotton fabric for antimicrobial applications and wound healing activity in fibroblast cells (L929). Saudi Journal of Biological Sciences. 2021;28(7):3633-3640. DOI: 10.1016/j.sjbs.2021.05.007.

43. Henning S.M., Niu Ya., Liu Y., Lee N.H., Hara Yu., Thames G.D., Minutti R.R., Carpenter C.L., Wang H., Heber D. Bioavailability and antioxidant effect of epigallocatechin gallate administered in purified form versus as green tea extract in healthy individuals. The Journal of Nutritional Biochemistry. 2005;16(10):610-616. DOI: 10.1016/j.jnutbio.2005.03.003.

44. Kar A. K., Singh A., Dhiman N., Purohit M. P., Jagdale P., Kamthan M., Singh D., Kumar M., Ghosh D., Patnaik S. Polymer-Assisted In Situ Synthesis of Silver Nanoparticles with Epigallocatechin Gallate (EGCG) Impregnated Wound Patch Potentiate Controlled Inflammatory Responses for Brisk Wound Healing. International Journal of Nanomedicine. 2019;14:9837-9854. DOI: 10.2147/IJN.S228462.

45. Galdiero S., Falanga A., Vitiello M., Cantisani M., Marra V., Galdiero M. Silver Nanoparticles as Potential Antiviral Agents. Molecules. 2011;16(10):8894-8918. DOI: 10.3390/molecules16108894.

46. Zachar O. Formulations for COVID-19 Early Stage Treatment via Silver Nanoparticles Inhalation Delivery at Home and Hospital. ScienceOpen. 2020:1-14. DOI: 10.14293/S2199-1006.1.SOR-.PPHBJEO.v1.

47. Siadati S. A., Afzali M., Sayadi M. Could silver nano-particles control the 2019-nCoV virus?; An urgent glance to the past. Chemical Review and Letters. 2020;3:9-11. DOI: 10.22034/crl.2020.224649.1044.

48. Wei L., Lu J., Xu H., Patel A., Chen Z.-S., Chen G. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discovery Today. 2015;20(5):595-601. DOI: 10.1016/j.drudis.2014.11.014.

49. AIDS. United Nations. Available at: https://www.un.org/en/global-issues/aids. Accessed: 04.06.2021.

50. Global HIV & AIDS statistics - Fact sheet. UNAIDS. Available at: https://www.unaids.org/en/resources/fact-sheet. Accessed: 04.06.2021.

51. Survival after introduction of HAART in people with known duration of HIV-1 infection. Lancet. 2000;355(9210):1158-1159. DOI: 10.1016/S0140-6736(00)02069-9.

52. Burgoyne R.W., Tan D.H.S. Prolongation and quality of life for HIV-infected adults treated with highly active antiretroviral therapy (HAART): a balancing act. Journal of Antimicrobial Chemotherapy. 2008;61(3):469-473. DOI: 10.1093/jac/dkm499.

53. Parboosing R., Maguire G. E. M., Govender P., Kruger H. G. Nanotechnology and the treatment of HIV infection. Viruses. 2012;4(4):488-520. DOI: 10.3390/v4040488.

54. Liu Y., Chen Ch. Role of nanotechnology in HIV/AIDS vaccine development. Advanced Drug Delivery Reviews. 2016;103:76-89. DOI: 10.1016/j.addr.2016.02.010.

55. Garrido C., Simpson C. A., Dahl N. P., Bresee J., Whitehead D. C., Lindsey E. A., Harris T. L., Smith C. A., Carter C. J., Feldheim D. L., Melander C., Margolis D. M. Gold nanoparticles to improve HIV drug delivery. Future Medicinal Chemistry. 2015;7(9):1097-1107. DOI: 10.4155/fmc.15.57.

56. Shah A., Gangwani M. R., Chaudhari N. S., Glazyrin A., Bhat H. K., Kumar A. Neurotoxicity in the Post-HAART Era: Caution for the Antiretroviral Therapeutics. Neurotoxicity Research. 2016;30(4):677-697. DOI: 10.1007/s12640-016-9646-0.

57. Sharma R. K., Cwiklinski K., Aalinkeel R., Reynolds J. L., Sykes D. E., Quaye E., Oh J., Mahajan S. D., Schwartz S. A. Immunomodulatory activities of curcumin-stabilized silver nanoparticles: Efficacy as an antiretroviral therapeutic. Immunological Investigations. 2017;46(8):833-846. DOI: 10.1080/08820139.2017.1371908.

58. Lara H. H., Ayala-Nunez N. V., Ixtepan-Turrent L., Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. Journal of Nanobiotechnology. 2010;8(1):1-10. DOI: 10.1186/1477-3155-8-1.

59. Shing C.-Y., Whiteley C. G., Lee D.-J. HIV protease: Multiple fold inhibition by silver nanoparticles-Spectrofluorimetric, thermodynamic and kinetic analysis. Journal of the Taiwan Institute of Chemical Engineers. 2014;45(4):1140-1148.

60. Tsai C.-H., Whiteley C. G., Lee D.-J. Interactions between HIV-1 protease, silver nanoparticles, and specific peptides. Journal of the Taiwan Institute of Chemical Engineers. 2019;103:20-32. DOI: 10.1016/j.jtice.2019.07.019.

61. Kumar S. D., Singaravelu G., Ajithkumar S., Murugan K., Nicoletti M., Benelli G. Mangrove-Mediated Green Synthesis of Silver Nanoparticles with High HIV-1 Reverse Transcriptase Inhibitory Potential. Journal of Cluster Science. 2017;28(1):359-367. DOI: 10.1007/s10876-016-1100-1.

62. Lu L., Sun R. W.-Y., Chen R., Hui C.-K., Ho C.-M., Luk J. M., Lau G. K. K., Che C.-M. Silver nanoparticles inhibit hepatitis B virus replication. Antiviral Therapy. 2008;13:253-262.

63. Li Y., Lin Z., Zhao M., Guo M., Xu T., Wang Ch., Xia H., Zhu B. Reversal of H1N1 influenza virus-induced apoptosis by silver nanoparticles functionalized with amantadine. RSC Advances. 2016;6(92):89679-89686. DOI: 10.1039/c6ra18493f.

64. Lin Z., Li Y., Guo M., Xu T., Wang Ch., Zhao M., Wang H., Chen T., Zhu B. The inhibition of H1N1 influenza virus-induced apoptosis by silver nanoparticles functionalized with zanamivir. RSC Advances. 2017;7(2):742-750. DOI: 10.1039/C6RA25010F.

65. Xiang D., Zheng Ya., Duan W., Li X., Yin J., Shigdar S., O'Connor M. L., Marappan M., Zhao X., Miao Y., Xiang B., Zheng C. Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. International Journal of Nanomedicine. 2013;8:4103-4114. DOI: 10.2147/IJN.S53622.

66. Morris D., Ansar M., Speshock J., Ivanciuc T., Qu Y., Casola A., Garofalo R. Antiviral and immunomodulatory activity of silver nanoparticles in experimental RSV infection. Viruses. 2019;11(8):732. DOI: 10.3390/v11080732.

67. Orlowski P., Tomaszewska E., Gniadek M., Baska P., Nowakowska J., Sokolowska J., Nowak Z., Donten M., Celichowski G., Grobelny J., Krzyzowska M. Tannic Acid Modified Silver Nanoparticles Show Antiviral Activity in Herpes Simplex Virus Type 2 Infection. PLoS ONE. 2014;9(8):e104113. DOI: 10.1371/journal.pone.0104113.

68. Huy T. Q., Thanh N. T. H., Thuy N. T., Chung P. V., Hung P. N., Le A.-T., Hanh N. T. H. Cytotoxicity and antiviral activity of electrochemical - synthesized silver nanoparticles against poliovirus. Journal of Virological Methods. 2017;241:52-57. DOI: 10.1016/j.jviromet.2016.12.015.

69. Chen N., Zheng Y., Yin J., Li X., Zheng C. Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro. Journal of Virological Methods. 2013;193(2):470-477. DOI: 10.1016/j.jviromet.2013.07.020

70. Sujitha V., Murugan K., Paulpandi M., Panneerselvam C., Suresh U., Roni M., Nicoletti M., Higuchi A., Madhiyazhagan P., Subramaniam J., Dinesh D., Vadivalagan C., Chandramohan B., Alarfaj A. A., Munusamy M. A., Barnard D. R., Benelli G. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitology Research. 2015;114(9):3315-3325. DOI: 10.1007/s00436-015-4556-2.

71. Hati S., Bhattacharyya S. Impact of Thiol-Disulfide Balance on the Binding of Covid-19 Spike Protein with Angiotensin-Converting Enzyme 2 Receptor. ACS Omega. 2020;5(26):16292-16298. DOI: 10.1021/acsomega.0c02125.

72. Jeremiah S. S., Miyakawa K., Morita T., Yamaoka Yu., Ryo A. Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochemical and Biophysical Research Communications. 2020;533(1):195-200. DOI: 10.1016/j.bbrc.2020.09.018.

73. Ravindran A., Chandran P., Khan S. S. Biofunctionalized silver nanoparticles: Advances and prospects. Colloids and Surfaces B: Biointerfaces. 2013;105:342-352. DOI: 10.1016/j.colsurfb.2012.07.036.

74. Mohammadi R., Eidi E., Ghavami M., Kassaee M. Z. Chitosan synergistically enhanced by successive Fe3O4 and silver nanoparticles as a novel green catalyst in one-pot, three-component synthesis of tetrahydrobenzo[α]xanthene-11-ones. Journal of Molecular Catalysis A: Chemical. 2014;393:309-316. DOI: 10.1016/j.molcata.2014.06.005.

75. Cai Yu., Tan F., Qiao X., Wang W., Chen J., Qiu X. Room-temperature synthesis of silica supported silver nanoparticles in basic ethanol solution and their antibacterial activity. RSC Advances. 2016;6(22):18407-18412. DOI: 10.1039/c5ra27053g.

76. Al-Masoodi A. H. H., Nazarudin N. F. F. B., Nakajima H., Tunmee S., Goh B. T., Majid W. H. B. A. Controlled growth of silver nanoparticles on indium tin oxide substrates by plasma-assisted hot-filament evaporation: Physical properties, composition, and electronic structure. Thin Solid Films. 2020;693:137686. DOI: 10.1016/j.tsf.2019.137686.

77. Hameed A., Fatima S., Rahman F.U., Yoon T.-H., Azam A., Khan S., Khan A., Islam N.U. Synergistic enzyme inhibition effect of cefuroxime by conjugation with gold and silver. New Journal of Chemistry. 2014;38(4):1641. DOI: 10.1039/c3nj00974b.

78. Jiang X., Fan X., Xu W., Zhang R., Wu G. Biosynthesis of Bimetallic Au-Ag Nanoparticles Using Escherichia coli and its Biomedical Applications. ACS Biomaterials Science and Engineering. 2020;6(1):680-689. DOI: 10.1021/acsbiomaterials.9b01297.

79. Dallas P., Tucek J., Jancik D., Kolar M., Panacek A., Zboril R. Magnetically Controllable Silver Nanocomposite with Multifunctional Phosphotriazine Matrix and High Antimicrobial Activity. Advanced Functional Materials. 2010;20(14):2347-2354. DOI: 10.1002/adfm.200902370.

80. Flores C. Y., Diaz C., Rubert A., Benftez G. A., Moreno M. S., Fernandez Lorenzo de Mele M. A., Salvarezza R. C., Schilardi P. L., Vericat C. Spontaneous adsorption of silver nanoparticles on Ti/TiO2 surfaces. Antibacterial effect on Pseudomonas aeruginosa. Journal of Colloid and Interface Science. 2010;350(2):402-408. DOI: 10.1016/j.jcis.2010.06.052.

81. Necula B. S., Fratila-Apachitei L. E., Berkani A., Apachitei I., Duszczyk J. Enrichment of anodic MgO layers with Ag nanoparticles for biomedical applications. Journal of Materials Science: Materials in Medicine. 2009;20(1):339-345. DOI: 10.1007/s10856-008-3589-9.

82. Lee D., Lee S. J., Moon J.-H., Kim J. H., Heo D. N., Bang J. B., Lim H.-N., Preparation of antibacterial chitosan membranes containing silver nanoparticles for dental barrier membrane applications. Journal of Industrial and Engineering Chemistry. 2018;66:196-202. DOI: 10.1016/j.jiec.2018.05.030.

83. Bhatia D., Mittal A., Malik D. K. Antimicrobial activity of PVP coated silver nanoparticles synthesized by Lysinibacillus varians. 3 Biotech. 2016;6(2):1-8. DOI: 10.1007/s13205-016-0514-7.

84. Galdoporpora J. M., Ibar A., Tuttolomondo M. V., Desimone M. F. Dual-effect core-shell polyphenol coated silver nanoparticles for tissue engineering. Nano-Structures & Nano-Objects. 2021;26:100716. DOI: 10.1016/j.nanoso.2021.100716.

85. Deka R., Sarma S., Patar P., Gogoi P., Sarmah J. K. Highly stable silver nanoparticles containing guar gum modified dual network hydrogel for catalytic and biomedical applications. Carbohydrate Polymers. 2020;248:116786. DOI: 10.1016/j.carbpol.2020.116786.

86. Rubina M. S., Said-Galiev E. E., Naumkin A. V., Shulenina A. V., Belyakova O. A., Vasil'kov A. Yu. Preparation and characterization of biomedical collagen-chitosan scaffolds with entrapped ibuprofen and silver nanoparticles. Polymer Engineering and Science. 2019;59(12):2479-2487. DOI: 10.1002/pen.25122.


Дополнительные файлы

1. Графический абстракт
Тема
Тип Исследовательские инструменты
Метаданные

Рецензия

Для цитирования:


Реджепов Д.Т., Водяшкин А.А., Сергородцева А.В., Станишевский Я.М. Биомедицинское применение наночастиц серебра (обзор). Разработка и регистрация лекарственных средств. 2021;10(3):176-187. https://doi.org/10.33380/2305-2066-2021-10-3-176-187

For citation:


Rejepov D.T., Vodyashkin A.A., Sergorodceva A.V., Stanishevskiy Y.M. Biomedical Applications of Silver Nanoparticles (Review). Drug development & registration. 2021;10(3):176-187. (In Russ.) https://doi.org/10.33380/2305-2066-2021-10-3-176-187

Просмотров: 850


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)