Preview

Drug development & registration

Advanced search

Dependence of Antimicrobial Effects of Guanidine-containing Pectin Derivatives from Some Structural Characteristics

https://doi.org/10.33380/2305-2066-2022-11-2-38-45

Abstract

Introduction. Up to the present time, there are practically no studies on the relationship between the structural characteristics and biological activity of antimicrobial polymers synthesized by the chemical addition of guanidine groups to polysaccharide macromolecules. Therefore, there is a need to carry out the chemical modification of guanidine with natural polymers, in particular polyaldehyde pectin, and to conduct comparative studies of the antimicrobial activity of the obtained samples with different physicochemical characteristics.

Aim. To conduct the synthesis of guanidine-containing pectin derivatives. In addition, to determine the influence of structural variations in the obtained samples on exhibiting antimicrobial properties.

Materials and methods. The synthesis of guanidine-containing pectin derivatives consisted of the following stages: periodate oxidation of the polysaccharide, modification of guanidine using polyaldehyde pectin, and chemical reduction of azomethine bonds. The amount of guanidine in the obtained samples was calculated by acidimetric titration, the nitrogen content (N, %) was determined using a Eura EA (Italy) elemental analyzer. The рКα values of the synthesized compounds were found by the back titration method. Absorption spectra were analyzed on a "UV 1280" spectrophotometer (Shimadzu, Japan) in the range λ = 180–400 nm. IR spectra were recorded on a Vector-22 spectrometer in the wavelength range of 400–4000 cm-1 in KBr tablets (3 mg sample / 300 mg KBr). The molecular weight characteristics of the synthesized derivatives were determined by high-performance gel permeation chromatography on an Agilent 1260 Infiniti liquid chromatograph. The acute toxicity of guanidine-containing pectin derivatives was calculated by the Prozorovsky method. Comparative assessment of antimicrobial activity was conducted by agar diffusion method.

Results and discussion. By varying the oxidation level of polyaldehyde pectin, synthesized compounds differ in the degree of substitution, guanidine content, molecular weight, and pKα value. It was found that the levels of the antibacterial and antifungal activity of the studied samples depend on the degree of substitution and the nature of the counterion. The antimicrobial effect increases with an increase in the quantitative content of guanidine groups in the macromolecular chain of pectin. Moreover, it was found that the change of low molecular weight Cl, NO3 , F, I counterions by carboxylate anions leads to a sharp decrease in antimicrobial properties. Upon oral injection of the synthesized compounds to mice, it was found that all samples belong to the category of practically non-toxic substances (V-class).

Conclusion. Comparative analysis of guanidine-containing pectin derivatives with different characteristics showed that the severity of the antimicrobial action of the synthesized compounds against bacteria and fungi of the genus Candida depends on the quantitative content of cationic groups and the nature of the counterion.

About the Authors

O. R. Akhmedov
Institute of Bioorganic Chemistry of the Uzbek Academy of Sciences
Uzbekistan

83, Mirzo Ulugbek str., Tashkent, 100125



S. A. Shomurotov
Institute of Bioorganic Chemistry of the Uzbek Academy of Sciences
Uzbekistan

83, Mirzo Ulugbek str., Tashkent, 100125



A. S. Turaev
Institute of Bioorganic Chemistry of the Uzbek Academy of Sciences
Uzbekistan

83, Mirzo Ulugbek str., Tashkent, 100125



A. V. Sidarenka
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus

2, Akademika Kuprevich str., Minsk, 220141



References

1. Aslam B., Wang W., Arshad M. I., Khurshid M., Muzammil S., Rasool M. H. Antibiotic resistance: a rundown of a global crisis. Infection and Drug Resistance. 2018;11:1645–1658. DOI: 10.2147/idr.s173867.

2. Ergene C., Yasuhara K., Palermo E. F. Biomimetic antimicrobial polymers: recent advances in molecular design. Polymer Chemistry. 2018;9:2407–2427. DOI: 10.1039/C8PY00012C.

3. Babutan I., Lucaci A., Botiz I. Antimicrobial Polymeric Structures Assembled on Surfaces. Polymers. 2021;13(10):1552. DOI: 10.3390/polym13101552.

4. Namivandi-Zangeneh R., Wong E. H., Boyer C. Synthetic Antimicrobial Polymers in Combination Therapy: Tackling Antibiotic Resistance. ACS Infectious Diseases. 2021;7(2):215–253. DOI:10.1021/acsinfecdis.0с00635.

5. Mortazavian H., Foster L. L., Bhat R., Patel S., Kuroda K. Decoupling the functional roles of cationic and hydrophobic groups in the antimicrobial and hemolytic activities of methacrylate random copolymers. Biomacromolecules. 2018;19:4370–4378. DOI: 10.1021/acs.biomac.8b01256.

6. Molotkovsky R. J., Galimzyanov T. R., Ermakov Yu. A. Heterogeneity in Lateral Distribution of Polycations at the Surface of Lipid Membrane: From the Experimental Data to the Theoretical Model. Materials. 2021;14:6623. DOI: 10.3390/ma14216623.

7. Yanez-Macías R., Munoz-Bonilla A., De Jesus-Tellez M. A., Maldonado-Textle H., Guerrero-Sánchez C., Schubert U. S., Guerrero-Santos R. Combinations of Antimicrobial Polymers with Nanomaterials and Bioactives to Improve Biocidal Therapies. Polymers. 2019;11(11):1789. DOI: 10.3390/polym11111789.

8. Grigor’eva M. N., Stel’makh S. A., Astakhova S. A., Tsenter I. M., Bazaron L. U., Batoev V. B., Mognonov D. M. Synthesis of Polyalkylguanidine Hydrochloride Copolymers and Their Antibacterial Activity Against Conditionally Pathogenic Microorganisms Bacillus Cereus and Escherichia Coli. Pharmaceutical Chemistry Journal. 2015;49(2):29–33. (In Russ.) DOI: 10.30906/0023-1134-2015-49-2-29-33.

9. Qian L., Guan Y., He B., Xiao H. Modified guanidine polymers: Synthesis and antimicrobial mechanism revealed by AFM. Polymer. 2008;49(10):2471–2475. DOI: 10.1016/j.polymer.2008.03.042.

10. Zhang Z., Peng P., Wu Q., Zhang J., Wu M., Liu J., Yang J. Preparation and antibacterial properties of poly(hexamethylene guanidine hydrochloride) modified ionic waterborne polyurethane. Progress in Organic Coatings. 2021;156:106246. DOI: 10.1016/j.porgcoat.2021.106246.

11. Chen S., Li C., Hou T., Cai Y., Liang L., Chen L., Li M. Polyhexamethylene guanidine functionalized chitosan nanofiber membrane with superior adsorption and antibacterial performances. Reactive and Functional Polymers. 2019;145:104379. DOI: 10.1016/j.reactfunctpolym.2019.104379.

12. Akhmedov O. R., Shomurotov Sh. A., Turaev A. S. Peculiarities of synthesis and antimicrobial properties of guanidine-containing carboxymethylcellulose derivatives. Chemistry of plant raw materials 2021;3:73–82. (In Russ.) DOI: 10.14258/jcprm.2021038705.

13. Shomurotov Sh. A., Akhmedov O. R., Turaev A. S. Mamadullaev G. Kh. Antituberculosis activity and pharmacokinetics of polymer conjugates of isoniazid and ethambutol. Pharmaceutical Chemistry Journal. 2021;6:67–71. (In Russ.) DOI: 10.30906/0023-1134-2021-55-6-23-27.

14. Keshk S. M. A. S., Bondock S., El-Zahhar A. A., Haija M. A. Synthesis and characterization of novel Schiff’s bases derived from dialdehyde cellulose-6-phosphate. Cellulose. 2019;26:3703–3712. DOI: 10.1007/s10570-019-02360-w.

15. Zhang L., Yan P., Li Ya., He X., Dai Yu., Tan Z. Preparation and antibacterial activity of a cellulose-based Schiff base derived from dialdehyde cellulose and L-lysine. Industrial Crops & Products. 2020;145:112126. DOI: 10.1016/j.indcrop.2020.112126.

16. Rawlinson L. B., Ryan S. M., Mantovani G., Syrett J. A., Haddleton D. M., Brayden D. J. Antibacterial Effects of Poly(2-(dimethylamino ethyl)methacrylate) against Selected Gram-Positive and Gram-Negative Bacteria. Biomacromolecules. 2010;11(2):443–453. DOI: 10.1021/bm901166y.

17. Tunik T. V., Nemchenko U. M., Ganenko T. V., Yurinova G. V., Dzhioev Yu. P., Sukhov B. G., Zlobin V. I., Trofimov B. A. Synthesis and Spectral Characterization of New Biodegradable Arabinogalactan Derivatives for Diagnosis and Therapy. Bulletin of the Russian Academy of Sciences: Physics. 2019;83(3):408–414. (In Russ.) DOI: 10.1134/s0367676519030268.

18. Khabriev R. U., editor. Guidance on the experimental (preclinical) study of new harmacological substances. Moscow: OAO «Izdatel'stvo «Meditsina»; 2005. 832 p. (In Russ.).

19. Glants S. Medical and Biological Statistics. Moscow: Praktika; 1999. 459 p. (In Russ.).

20. Munoz-Bonilla A., López D., Fernández-García M. Providing Antibacterial Activity to Poly(2-Hydroxy Ethyl Methacrylate) by Copolymerization with a Methacrylic Thiazolium Derivative. International journal of molecular sciences. 2018;19(12):4120–4133. DOI: 10.3390/ijms19124120.

21. Timofeeva L. M., Kleshcheva N. A., Moroz A. F., Didenko L. V. Secondary and Tertiary Polydiallylammonium Salts: Novel Polymers with High Antimicrobial Activity. Biomacromolecules. 2009;10(11):2976–2986. DOI: 10.1021/bm900435v.

22. Sharma S. K., Chauhan G. S., Gupta R., Ahn H. Tuning anti-microbial activity of poly(4-vinyl 2-hydroxyethyl pyridinium) chloride by anion exchange reactions. Journal of Materials Science: Materials in Medicine. 2009;21(2):717–724. DOI: 10.1007/s10856-009-3932-9.

23. Kharitonova E. V., Zhuravlev O. E., Chervinets V. M., Voronchikhina L. I., Demidova M. A. Synthesis and antimicrobial activity of quaternary ammonium, pyridinium, and morpholinium tetrachloroferrates. Pharmaceutical Chemistry Journal. 2012;46(5):6–8. DOI: 10.30906/0023-1134-2012-46-5-6-8 (In Russ.).


Supplementary files

1. Графический абстракт
Subject
Type Исследовательские инструменты
View (1MB)    
Indexing metadata ▾

Review

For citations:


Akhmedov O.R., Shomurotov S.A., Turaev A.S., Sidarenka A.V. Dependence of Antimicrobial Effects of Guanidine-containing Pectin Derivatives from Some Structural Characteristics. Drug development & registration. 2022;11(2):38-45. (In Russ.) https://doi.org/10.33380/2305-2066-2022-11-2-38-45

Views: 1230


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)