Preview

Drug development & registration

Advanced search

Flow Dispersion for Obtaining Ivermectin Encapsulated in Polycaprolactone Microparticles

https://doi.org/10.33380/2305-2066-2022-11-2-79-86

Abstract

Introduction. Ivermectin is an antiparasitic drug that has been widely used in veterinary medicine. Parasitic diseases of farm animals cause great economic damage and pose the risk of human infection. Prolonged dosage forms of ivermectin are effective against them. The first step in the creation of such a drug was the preparation and study of polymeric microparticles of polycaprolactone with encapsulated ivermectin.

Aim. Obtaining polymeric microparticles of polycaprolactone with encapsulated ivermectin using a continuous flow-through unit.

Materials and methods. The object of the study was microparticles of polycaprolactone with encapsulated ivermectin obtained on a continuous flow-through unit. Determination of the average particle size and size distribution was carried out by the method of laser diffraction. Microscopy was used to visually assess the shape and size of the microparticles. UV – spectrophotometry was use to quantitative determination of ivermectin.

Results and discussion. Polymeric microparticles of polycaprolactone with encapsulated ivermectin was obtained and had an average size of 126.63 ± 42.67 μm and contained 32,73–62,00 % of ivermectin. Suspensions prepared from the obtained microparticles were passed through a 20G injection needle without noticeable resistance, which indicates the possibility of their use as the basis of an injectable preparation.

Conclusion. Obtained results confirm the possibility of using flow-through dispersion using a device developed by us for obtaining polycaprolactone microparticles with encapsulated ivermectin, which are suitable for injection. Thus, the results obtained make it possible to continue studies of microparticles and create a drug based on them.

About the Authors

O. I. Rybchenko
Federal State Budget Educational Institution of Higher Education "MIREA – Russian Technological University"
Russian Federation

86, Vernadsky av., Moscow, 119571



V. V. Suslov
Federal State Budget Educational Institution of Higher Education "MIREA – Russian Technological University"
Russian Federation

86, Vernadsky av., Moscow, 119571



S. A. Kedik
Federal State Budget Educational Institution of Higher Education "MIREA – Russian Technological University"
Russian Federation

86, Vernadsky av., Moscow, 119571



Yu. M. Domnina
Federal State Budget Educational Institution of Higher Education "MIREA – Russian Technological University"
Russian Federation

86, Vernadsky av., Moscow, 119571



A. I. Mogaibo
Federal State Budget Educational Institution of Higher Education "MIREA – Russian Technological University"; JSC Institute of Pharmaceutical Technologies
Russian Federation

86, Vernadsky av., Moscow, 119571; 21/1, Skolkovskoye highway, Moscow, 121353



References

1. McCall J. W. The safety-net story about macrocyclic lactone heartworm preventives: a review, an update, and recommendations. Vet. Parasitol. 2005;133(2–3):197–206. DOI: 10.1016/j.vetpar.2005.04.005.

2. Genchi C., Rinaldi L., Mortarino M., Genchi M., Cringoli G. Climate and Dirofilaria infection in Europe. Vet. Parasitol. 2009;163:286–292. DOI: 10.1016/j.vetpar.2009.03.026.

3. Koblinsky K. C., Deus K. M., Butters M. P., Hongyu T., Gray M., DaSilva I. M., Sylla M., Foy B. D. The effect of oral antielmintics on the survivorship and re-feeding frequency of anthropophilic mosquito disease vectors. Acta Trop. 2010;116:119–126. DOI: 10.1016/j.actatropica.2010.06.001.

4. Koblinsky K. C., Sylla M., Chapman P. L., Sarr M. D., Foy B. D. Ivermectin mass drug administration to human disrupt malaria parasite transmission in Senegales villages. Am. J. Trop. Med. Hyg. 2011;85(1):3–5. DOI: 10.4269/ajtmh.2011.11-0160.

5. Mendes A. M., Albuquerque I. S., Machado M., Pissarra J., Meireles P., Prudencio M. Inhibition of Plasmodium liver infection by ivermectin. Antimicrob. Agents. Chemiother. 2017:61(2). DOI: 10.1128/AAC.02005-16.

6. Caly L., Druce J. D., Catton M. G., Jans D. A., Wagstaff K. M. The FDA-approved Drug Ivermectin inhibits the replication of SARSCoV-2 in vitro. Antiviral Research. 2020;178:104787. DOI: 10.1016/j.antiviral.2020.104787.

7. Rashid M., Rashid M. I., Akbar H., Ahmad L., Hassan M. A., Ashraf K., Saeed K., Gharbi M. A systematic review on modelling approaches for economic losses studies caused by parasites and their associated diseases in cattle, Parasitology. 2019;146(2):129–141. DOI: 10.1017/S0031182018001282.

8. Ali M. S., Saeed K., Rashid I., Ijaz M., Akbar H., Rashid M., Ashraf K. Anthelmintic Drugs: Their Efficacy and Cost-Effectiveness in Different Parity Cattle. Parasitol. 2018;104(1):79–85 DOI: 10.1645/17-4.

9. Belimenko V. V., Samoilovskaya N. A., Novosad E. V., Gulyukin A. M., Makhmadshova Z. A., Khristianovsky P. I. Features of economic damage from echinococcosis in farm animals. Russian veterinary journal. Farm animals. 2017;7:15–19. (In Russ.)

10. Ferreira da Silva C., Taline A., de Melo Barbosa R., Cardoso J. C., Morsink M., Barbosa Souto E., Severino P. New Trends in Drug Delivery Systems for Veterinary Applications. Pharmaceutical Nanotechnology. 2021;9(1):15–25. DOI: 10.2174/2211738508666200613214548.

11. Sasidharan S., Saudagar P. Encapsulation and delivery of antiparasitic drugs: a review. Medicine. 2020;323–342. DOI: 10.1016/B978-0-12-819363-1.00017-X.

12. Suslov V. V., Engasheva E. S., Kedik S. A., Shnyak E. A., Maximova P. O. Prolonged forms of anthelmintic drugs. Russian Journal of Parasitology. 2016;38:539–546. DOI: 10.12737/23080. (In Russ.)

13. Baiak B. H. B., Lehnen C. R., da Rocha R. A. Anthelmintic resistance in cattle: A systematic review and meta-analysis. Livestock Science. 2018;217:127–135. DOI: 10.1016/j.livsci.2018.09.022.

14. Chaudhary K., Patel M. M, Mehta P. J. Long-Acting Injectables: Current Perspectives and Future Promise Critical Reviews in Therapeutic Drug Carrier Systems. 2019;36(2):137–181. DOI: 10.1615/CritRevTherDrugCarrierSyst.2018025649.

15. Zhavoronok E. S., Kedik S. A., Panov A. V., Petrova E. A., Suslov V. V. Polymer microparticles for medicine and biology. Moscow: ZAO "IFT"; 2014. 480 p. (In Russ.)

16. Beck L. R., Pope V. Z., Tice T. R., Gilley R. M. Long-acting injectable microsphere formulation for the parenteral administration of levonorgestrel. Advances in Contraception. 1985;1:119–129. DOI: 10.1007/BF01849793.

17. Nguen T. T. T., Kedik S. A., Suslov V. V., Shnyak E. A., Vorfolomeeva E. V., Nikonorova E. V. Development of a method for preparing polymer microspheres containing immobilized diclofenac. Fine Chemical Technologies. 2015;10(4):27–31. (In Russ.)

18. Kedik S. A., Omelchenko O. A., Suslov V. V., Shnyak E. A. Development of a method for the preparation of the naltrexone base encapsulated in polymeric microparticles. Drug development & registration. 2018;(1):32–35. (In Russ.)

19. Li W., Zhang L., Ge X., Xu B., Zhang W., Qu L., Choi C.-H., Xu J., Zhang A., Lee H., Weitz D. A. Microfluidic fabrication of microparticles for biomedical applications. The Royal Society of Chemistry Reviews. 2018;47(15):5646–5683. DOI: 10.1039/c7cs00263g.

20. Wang J., Li Y., Wang X., Wang J., Tian H., Zhao P., Tian Y., Gu Y., Wang L., Wang C. Droplet Microfluidics for the Production of Microparticles and Nanoparticles. Micromachines. 2017;8(22):1–23. DOI: 10.3390/mi8010022.

21. Aceves-Serrano L. G., Ordaz-Martinez K. A., Vazquez-Piñon M., Hwang H. Microfluidics for drug delivery systems. Nanoarchitectonics in Biomedicine. 2019;55–83. DOI: 10.1016/B978-0-12-816200-2.00002-5.

22. Martino C., deMello A. J. Droplet-based microfluidics for artificial cell eneration: a brief review. Interface Focus. 2016;6(4):20160011. DOI: 10.1098/rsfs.2016.0011.

23. Dorati R., Conti B., Colzani B., Dondi D., Lazzaroni S., Modena T., Genta I. Ivermectin controlled release implants based on poly-D,llactide and poly-ε-caprolactone. Journal of Drug Delivery Science and Technology. 2018;46:101–110. DOI: 10.1016/j.jddst.2018.04.014.

24. Dorati R., Genta I., Colzani B., Modena T., Bruni G., Tripodo G., Conti B. Stability Evaluation of Ivermectin-Loaded Biodegradable Microspheres. AAPS PharmSciTech. 2015;16(5):1129–1139. DOI: 10.1208/s12249-015-0305-1.

25. Lan W., Li S., Luo G. Numerical and experimental investigation of dripping and jetting flow in a coaxial micro-channel. Chem. Eng. Sci. 2015;134:76–85. DOI: 10.1016/j.ces.2015.05.004.

26. Vasiliu S., Lungan M. A., Racovita S., Popa M. Porous microparticles based on methacrylic copolymers and gellan as drug delivery systems. Polymer International. 2020;69:11:1066–1080. DOI: 10.1002/pi.5917.


Supplementary files

1. Графический абстракт
Subject
Type Исследовательские инструменты
View (72KB)    
Indexing metadata ▾

Review

For citations:


Rybchenko O.I., Suslov V.V., Kedik S.A., Domnina Yu.M., Mogaibo A.I. Flow Dispersion for Obtaining Ivermectin Encapsulated in Polycaprolactone Microparticles. Drug development & registration. 2022;11(2):79-86. (In Russ.) https://doi.org/10.33380/2305-2066-2022-11-2-79-86

Views: 1213


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)