Investigation of the Influence of Formulation Method on Technological Parameters of Gramicidin S and β-cyclodextrin Inclusion Complexes
https://doi.org/10.33380/2305-2066-2022-11-2-102-108
Abstract
Introduction. Gramicidin S is a peptide antibiotic that has been widely used for more than 70 years. Gramicidin S is available in the form of tablets with a low dosage, which leads to possible deviations in the "Uniformity of dosage" parameter during manufacturing. Another limitation is the presence of lactose and sucrose in the formulation, which limits the drug application by patients demonstrating intolerance. As an alternative, we propose inclusion complexes of gramicidin S with β-cyclodextrin.
Aim. The work aims to describe the influence of the methodology to prepare the inclusion complex on the characteristics and properties of the final product.
Materials and methods. The gramicidin S – β-cyclodextrin inclusion complex has been prepared by dry mixing, paste complexation, co-precipitation and fluid-bed complexation. The complex formation has been confirmed by 1H NMR spectroscopy, differential scanning calorimetry and thermogravimetry while the morphology and size by scanning electron microscopy for the solid and dynamic light scattering for the solution. The flowability, slope angle, bulk density of the obtained powders were estimated using the methods described in Russian Pharmacopoeia of the XIV edition.
Results and discussion. In the present work, we prepared a set of gramicidin S and β-cyclodextrin inclusion complexes by various approaches. The thermal analysis demonstrated a significant change in the peak referring to phase transition of the substances, indicating the interaction between the components. The 1H NMR spectroscopy reveals that the L-ornithine amino group is the part of gramicidin S involved in the complexation. Evaluating the technological properties of gramicidin S and β-cyclodextrin inclusion complexes significant variability, which is associated with the particle morphology. Complexes obtained using co-precipitation and fluid-bed complexation methods are more suitable for producing gramicidin S tablet production by direct compression technology.
Conclusion. Herein, we demonstrate that the formation of the gramicidin S and β-cyclodextrin inclusion complex occurs through the L-ornithine amino group in the gramicidin S. In addition, depending on the method significant differences in the particle size and shape have been observed. The obtained results could provide valuable information for the development of new gramicidin S buccal formulations, which are more consistent in the "Uniformity of dosage" and allow to avoid the use of lactose and sucrose as excipients.
About the Authors
A. A. DrannikovRussian Federation
30, Lenin аv., Tomsk, 634050; 80, Stancionnaya str., Novosibirsk, 630096
I. S. Vatlin
Russian Federation
30, Lenin аv., Tomsk, 634050; 80, Stancionnaya str., Novosibirsk, 630096
M. E. Trusova
Russian Federation
30, Lenin аv., Tomsk, 634050
A. Di Martino
Russian Federation
30, Lenin аv., Tomsk, 634050
S. V. Krivoshchekov
Russian Federation
2, Moskovskiy Trakt, Tomsk, 634050
A. M. Guriev
Russian Federation
2, Moskovskiy Trakt, Tomsk, 634050
M. V. Belousov
Russian Federation
30, Lenin аv., Tomsk, 634050; 2, Moskovskiy Trakt, Tomsk, 634050
References
1. Pavithrra G., Rajasekaran R. Gramicidin peptide to combat antibiotic resistance: a review. International Journal of Peptide Research and Therapeutics. 2020;26(1):191–199. DOI: 10.1007/s10989-019-09828-0.
2. Wenzel M., Rautenbach M., Vosloo J. A., Siersma T., Aisenbrey C. H., Zaitseva E., Laubscher W. E., van Rensburg W., Behrends J. C., Bechinger B., Hamoen L. W. The multifaceted antibacterial mechanisms of the pioneering peptide antibiotics tyrocidine and gramicidin S. mBio. 2018;9(5). DOI: 10.1128/mBio.00802-18.
3. Mahours G. M., Shaaban D. E. Z., Shazly G. A., Auda S. H. The effect of binder concentration and dry mixing time on granules, tablet characteristics and content uniformity of low dose drug in high shear wet granulation. Journal of Drug Delivery Science and Technology. 2017;39,192–199. DOI: 10.1016/j.jddst.2017.03.014.
4. Del Valle E. M. M. Cyclodextrins and their uses: a review. Process Biochemistry. 2004;39(9):1033–1046. DOI: 10.1016/s0032-9592(03)00258-9.
5. Conceição J., Adeoye O., Cabral-Marques H. M., Lobo J. M. S. Cyclodextrins as excipients in tablet formulations. Drug Discovery Today. 2018;23(6):1274–1284. DOI: 10.1016/j.drudis.2018.04.009.
6. Prabu S., Samad N. A., Ahmad N. A., Jumbri K., Raoov M., Rahim N. Y., Samikannu K., Mohamad S. Studies on the supramolecular complex of a guanosine with beta-cyclodextrin and evaluation of its anti-proliferative activity. Carbohydrate research. 2020;497:108–138. DOI: 10.1016/j.carres.2020.108138.
7. Alshaer W., Zraikat M., Amer A., Nsairat H., Lafi Z., Alqudah D. A., Qadi E. A., Alsheleh T., Odeh F., Alkaraki A., Zihlif M., Bustanji Y., Fattal E., Awidi A. Encapsulation of echinomycin in cyclodextrin inclusion complexes into liposomes: in vitro anti-proliferative and anti-invasive activity in glioblastoma. RSC Advances. 2019; 9(53):30976–30988. DOI: 10.1039/c9ra05636j.
8. Conceição J., Adeoye O., Cabral-Marques H., Concheiro A., Alvarez-Lorenzo C., Lobo J. M. S. Orodispersible carbamazepine/hydroxypropyl-β-cyclodextrin tablets obtained by direct compression with five-in-one co-processed excipients. AAPS PharmSciTech. 2020;21(2):1–10. DOI: 10.1208/s12249-019-1579-5.
9. Demchenko D. V., Dzhayn E. A., Balaban’yan V. Yu., Makarova M. N., Makarov V. G. Development and biopharmaceutical evaluation of tablets based on the sparingly soluble substance 1-[2-(2-benzoylphenoxy)ethyl]-6-methyluracil. Drug development and registration. 2020;9(4):79–87. (In Russ.) DOI: 10.33380/2305-2066-2020-9-4-79-87.
10. Švonja-Parezanović G., Lalić-Popović M., Goločorbin-Kon S., Todorović N., Pavlović N., Jovičić-Bata J. The effect of magnesium stearate and sodium starch glycolate on powder flowability. Acta Periodica Technologica. 2019;50:304–310. DOI: 10.2298/APT1950304S.
11. Nachajski M. J., Bazela A., Zarzycka M., Broszczyk A., Kolba A., Kolodziejczyk M. K. Effect of API on Powder Flowability, Direct Compression and Properties of Orally Disintegrating Tablets: A Preformulation Study. Indian Journal of Pharmaceutical Sciences. 2019;81(3):489–495. DOI: 10.36468/pharmaceutical-sciences.534.
12. Sun W. J., Aburub A., Sun C. C. Particle Engineering for Enabling a Formulation Platform Suitable for Manufacturing Low-Dose Tablets by Direct Compression. Journal of Pharmaceutical Sciences. 2017;106(7):1772–1777. DOI: 10.1016/j.xphs.2017.03.005.
Supplementary files
|
1. Графический абстракт | |
Subject | ||
Type | Исследовательские инструменты | |
View
(911KB)
|
Indexing metadata ▾ |
Review
For citations:
Drannikov A.A., Vatlin I.S., Trusova M.E., Di Martino A., Krivoshchekov S.V., Guriev A.M., Belousov M.V. Investigation of the Influence of Formulation Method on Technological Parameters of Gramicidin S and β-cyclodextrin Inclusion Complexes. Drug development & registration. 2022;11(2):102-108. https://doi.org/10.33380/2305-2066-2022-11-2-102-108