Quantitative determination of phenazepam and its active metabolite in human blood plasma at different extraction procedures
https://doi.org/10.33380/2305-2066-2024-13-3-1609
Abstract
Introduction. The presence of the active metabolite (3-hydroxyphenazepam, 3-OH-PHEN), the wide interindividual variability of the therapeutic effect of phenazepam (PHEN), as well as its active moiety in the blood, determine the relevance of therapeutic drug monitoring (TDM). To do this, the researcher must have an express analytical technique with a wide analytical range, a low limit of quantification (LLOQ), and with robustness with different sample preparation methods.
Aim. Development and validation of quantitative methods for PHEN and 3-OH-PHEN in human blood plasma with different sample preparation methods.
Materials and methods. The determination of PHEN and 3-OH-PHEN has been performed by high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). Solid-phase extraction (SPE) and liquid extraction with support (SLE) otherwise called liquid-liquid extraction in the solid phase were used for sample preparation. Metoprolol was utilized as an internal standard (IS). Gradient elution profile between mobile phase A (0.2 % aqueous formic acid) and B (100 % acetonitrile) has been used. Column: Hypersil GOLD® C18, 50 × 2.1 mm, 3.5 μm.
Results and discussion. Two methods have been developed for the quantitative determination of PHEN and 3-OH-PHEN in human blood plasma using different sample preparation methods: SPE and SLE. The conditions of chromatographic separation and mass spectrometric detection of the analytes are selected. The following validation characteristics were determined for both methods: selectivity, calibration curve, accuracy, precision, degree of extraction, LLOQ, carry-over effect, matrix factor, stability of standard solutions and analyte in the matrix.
Conclusion. The validation results of the developed methods meet the established criteria, which allows them to be used for the quantitative determination of PHEN and 3-OH-PHEN in human blood plasma. The wide analytical range for both methods 1–1000.00 ng/ml allows the use them for pharmacokinetics and bioequivalence studies, as well as in toxicology.
About the Authors
I. I. MiroshnichenkoRussian Federation
34, Kashirskoe shosse, Moscow, 115522
A. I. Platova
Russian Federation
34, Kashirskoe shosse, Moscow, 115522
I. I. Kuzmin
Russian Federation
34, Kashirskoe shosse, Moscow, 115522
D. V. Ivaschenko
Russian Federation
Building 1, 2/1, Barrikadnaya str., Moscow, 125993
References
1. Moosmann B., Huppertz L. M., Hutter M., Buchwald A., Ferlaino S., Auwärter V. Detection and identification of the designer benzodiazepine flubromazepam and preliminary data on its metabolism and pharmacokinetics. Journal of Mass Spectrometry. 2013;48(11):1150–1159.
2. Voronina T. A., Seredenin S. B. Prospects of search for new anxiolytics. Éksperimentalnaya i Klinicheskaya Farmakologiya. 2002;65(5):4–17. (In Russ.)
3. Gorodnichev A. V., Kostyukova E. G. The place of phenazepam in the modern use of benzodiazepine tranquilizers. Current Therapy of Mental Disorders. 2011;2:26–29 (In Russ.)
4. Seredenin S. B., Voronina T. A., Neznamov G. G., Zherdev V. P. Phenazepam: 25 years in medical practice. Moscow: Nauka; 2007. 222 p. (In Russ.)
5. Osadshiy Y. Y., Voblenko R. A., Archakov D. S., Tarakanova E. A. Benzodiazepines. An attempt to arrive at an informed consensus. Current Therapy of Mental Disorders. 2016;1:2–10. (In Russ.)
6. Brunetti P., Giorgetti R., Tagliabracci A., Huestis M. A., Busardò F. P. Designer benzodiazepines: a review of toxicology and public health risks. Pharmaceuticals. 2021;14(6):560. DOI: 10.3390/ph14060560.
7. Kerrigan S., Mellon M. B. Hinners P. Detection of phenazepam in impaired driving. Journal of Analytical Toxicology. 2013;37(8):605–610. DOI:10.1093/jat/bkt075.
8. Stephenson J. B., Golz D. E., Brasher M. J. Phenazepam and its Effects on Driving. Journal of Analytical Toxicology. 2013;37(1):25–29. DOI: 10.1093/jat/bks080.
9. Voronina T. A. Larionov V. B., Golovenko N. Y., Nerobkova L. N., Gaidukov I. O. Role of 3-oximetabolite phenazepam and levan in realize their neurotropic efficacy. Pharmacokinetics and Pharmacodynamics. 2014;1:44–49 (In Russ.)
10. Zastrozhin M. S., Skryabin V. Yu., Sorokin A. S., Petukhov A. E., Smirnov V. V., Pankratenko E. P., Grishina E. A., Ryzhikova K. A., Panov A. S., Savchenko L. M., Bryun E. A., Sychev D. A. CYP3A subfamily activity affects the equilibrium concentration of Phenazepam® in patients with anxiety disorders and comorbid alcohol use disorder. Pharmacogenomics. 2020;21(7):449–457. DOI: 10.2217/pgs-2019-0071.
11. Pennings E., van Amsterdam J. G. C., Schoones J. W., Kershaw S. Phenazepam Pre-Review Report Agenda item 5.8 Expert Committee on Drug Dependence Thirty-seventh Meeting. World Health Organization. 2015.
12. Zherdev V. P., Voronina T. A., Garibova T. L., Kolyvanov G. B., Litvin A. A., Sariev A. K., Tohmahchi V. N., Vasil’ev A. E. A comparative study of the pharmacokinetics and efficacy of fenazepam upon transdermal and enteral administration. Éksperimentalnaya i Klinicheskaya Farmakologiya. 2003;66(1):50–53 (In Russ.)
13. Ékonomov A. L., Zherdev V. P. Method of quantitative gas-chromatographic determination of phenazepam and its metabolite 3-hydroxyphenazepam in plasma. Pharmaceutical Chemistry Journal. 1980;14(8):579–582.
14. O’Connor L. C., Torrance H. J., McKeown D. A. ELISA detection of phenazepam, etizolam, pyrazolam, flubromazepam, diclazepam and delorazepam in blood using Immunalysis® benzodiazepine kit. Journal of Analytical Toxicology. 2016;40(2):159–161. DOI: 10.1093/jat/bkv122.
15. Mastrovito R. A., Papsun D. M., Logan B. K. The Development and Validation of a Novel Designer Benzodiazepines Panel by LC-MS-MS. Journal of Analytical Toxicology. 2021;45(5):423–428. DOI: 10.1093/jat/bkab013.
16. Yang C.-A., Tsai C.-Y., H.-C. Liu, Liu R. H., Lin D.-L. Designer benzodiazepines and their metabolites in post- and antemortem specimens: Quantitation by UHPLC-MS/MS and findings in Taiwan. Toxicologie Analytique et Clinique. 2022;34(3):S180. DOI: 10.1016/j.toxac.2022.06.312.
17. Mei V., Concheiro M., Pardi J., Cooper G. Validation of an LC-MS/MS Method for the Quantification of 13 Designer Benzodiazepines in Blood. Journal of Analytical Toxicology. 2019;43(9):688–695. DOI: 10.1093/jat/bkz063.
18. Pettersson Bergstrand M., Beck O., Helander A. Urine analysis of 28 designer benzodiazepines by liquid chromatography-high-resolution mass spectrometry. Clinical Mass Spectrometry. 2018;10:25–32. DOI: 10.1016/j.clinms.2018.08.004.
19. Crichton M. L., Shenton C. F., Drummond G., Beer L. J., Seetohul L. N., Maskell P. D. Analysis of phenazepam and 3-hydroxyphenazepam in post-mortem fluids and tissues. Drug Testing and Analysis. 2015;7(10):926–936. DOI: 10.1002/dta.1790.
20. Bioanalytical Method Validation. Guidance for Industry. New Hampshire: Biopharmaceutics; 2018. 44 p.
Supplementary files
|
1. Графический абстракт | |
Subject | ||
Type | Other | |
View
(555KB)
|
Indexing metadata ▾ |
Review
For citations:
Miroshnichenko I.I., Platova A.I., Kuzmin I.I., Ivaschenko D.V. Quantitative determination of phenazepam and its active metabolite in human blood plasma at different extraction procedures. Drug development & registration. 2024;13(3):199-207. (In Russ.) https://doi.org/10.33380/2305-2066-2024-13-3-1609