Preview

Drug development & registration

Advanced search

Optimization of the Fc-fusion protein refolding method produced from the bacterial expression system

https://doi.org/10.33380/2305-2066-2025-14-1-1889

Abstract

Introduction. The production of Fc-fused proteins in prokaryotic systems often results in the formation of insoluble aggregates due to improper folding of polypeptide chains. To obtain functional proteins, a refolding step is required. However, developing refolding parameters can be time-consuming. The optimization of renaturation conditions using the Design of Experiments (DoE) approach allows for the calculation of optimal process parameters and the evaluation of contributing factors and their interactions.

Aim. This study aims to evaluate the effects of denaturation buffer pH, as well as oxidative and reducing agent concentrations, on the efficiency of Fc-fusion protein refolding in vitro and to determine optimal refolding parameters.

Materials and methods. Fc-fusion protein inclusion bodies were obtained from an Escherichia coli BL21 bacterial expression system. The experiment was designed using an orthogonal composite design (Orthogonal Central Composite Design, CCO). Experimental design, statistical data processing, and parameter optimization were conducted using MODDE (v. 12.1, Sartorius Stedim Data Analytics AB, Germany). Chromatographic purity and yield of the target protein, as determined by high-performance size-exclusion chromatography, were used as response variables.

Results and discussion. The DoE approach successfully optimized the Fc-fusion protein refolding process. Response surface plots were constructed, and the optimal factor values were determined. The statistical models demonstrated high predictive accuracy and data reproducibility. The refolding process was successfully validated under optimized conditions, resulting in a decrease in high-molecular-weight impurities and improperly folded protein forms. The chromatographic purity of the target protein increased by more than 10 %, as confirmed by high-performance size-exclusion chromatography.

Conclusion. The study established significant effects of buffer pH, redox pair concentrations, and their interactions on the yield and chromatographic purity of the Fc-fused protein. The interplay between oxidative and reducing components and buffer pH was demonstrated. Increasing the buffer pH led to improved refolding efficiency.

About the Authors

P. S. Astrelina
JSC "Pharm-Holding"
Russian Federation

34A, Svyazi str., Strelna village, Saint-Petersburg, 198515



S. A. Ishchuk
JSC "Pharm-Holding"
Russian Federation

34A, Svyazi str., Strelna village, Saint-Petersburg, 198515



A. V. Kabanova
JSC "Pharm-Holding"
Russian Federation

34A, Svyazi str., Strelna village, Saint-Petersburg, 198515



R. V. Drai
JSC "Pharm-Holding"
Russian Federation

34A, Svyazi str., Strelna village, Saint-Petersburg, 198515



References

1. Jafari R., Zolbanin N. M., Rafatpanah H., Majidi J., Kazemi T. Fc-fusion Proteins in Therapy: An Updated View. Current Medicinal Chemistry. 2017;24(12):1228–1237. DOI: 10.2174/0929867324666170113112759.

2. Rath T., Baker K., Dumont J. A., Peters R. T., Jiang H., Qiao S.-W., Lencer W. I., Pierce G. F., Blumberg R. S. Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics. Critical Reviews in Biotechnology. 2015;35(2):235–254. DOI: 10.3109/07388551.2013.834293.

3. Liu L. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein & Cell. 2018;9(1):15–32. DOI: 10.1007/s13238-017-0408-4.

4. Carrió M. M., Cubarsi R., Villaverde A. Fine architecture of bacterial inclusion bodies. FEBS Letters. 2000;471(1):7–11. DOI: 10.1016/S0014-5793(00)01357-0.

5. Bhatwa A., Wang W., Hassan Y. I., Abraham N., Li X.-Z., Zhou T. Challenges Associated With the Formation of Recombinant Protein Inclusion Bodies in Escherichia coli and Strategies to Address Them for Industrial Applications. Frontiers in Bioengineering and Biotechnology. 2021;9:630551. DOI: 10.3389/fbioe.2021.630551.

6. Maas C., Hermeling S., Bouma B., Jiskoot W., Gebbink M. F. B. G. A Role for Protein Misfolding in Immunogenicity of Biopharmaceuticals. Journal of Biological Chemistry. 2007;282(4):2229–2236. DOI: 10.1074/jbc.M605984200.

7. Micheletti C. Comparing proteins by their internal dynamics: Exploring structure–function relationships beyond static structural alignments. Physics of Life Reviews. 2013;10(1):1–26. DOI: 10.1016/j.plrev.2012.10.009.

8. Bahar I., Lezon T. R., Yang L.-W., Eyal E. Global Dynamics of Proteins: Bridging Between Structure and Function. Annual Review of Biophysics. 2010;39:23–42. DOI: 10.1146/annurev.biophys.093008.131258.

9. Seckler R., Jaenicke R. Protein folding and protein refolding. The FASEB Journal. 1992;6(8):2545–2552. DOI: 10.1096/fasebj.6.8.1592207;

10. Depuydt M., Messens J., Collet J.-F. How Proteins Form Disulfide Bonds. Antioxidants & Redox Signaling. 2011;15(1):49–66. DOI: 10.1089/ars.2010.3575.

11. Buscajoni L., Martinetz M. C., Berkemeyer M., Brocard C. Refolding in the modern biopharmaceutical industry. Biotechnology Advances. 2022;61:108050. DOI: 10.1016/j.biotechadv.2022.108050.

12. Roufarshbaf M., Akbari V. Development of Solubilization and Refolding Buffers. In: Kopp J., Spadiut O., editors. Inclusion Bodies. Totowa: Humana Press; 2023. P. 155–164. DOI: 10.1007/978-1-0716-2930-7_10.

13. Feige M. J., Hendershot L. M. Disulfide bonds in ER protein folding and homeostasis. Current Opinion in Cell Biology. 2011;23(2):167–175. DOI: 10.1016/j.ceb.2010.10.012.

14. Narayan M. Revisiting the Formation of a Native Disulfide Bond: Consequences for Protein Regeneration and Beyond. Molecules. 2020;25(22):5337. DOI: 10.3390/molecules25225337.

15. Mandenius C.-F., Brundin A. Bioprocess optimization using design-of-experiments methodology. Biotechnology Progress. 2008;24(6):1191–1203. DOI: 10.1002/btpr.67.

16. De Bernardez Clark E. Protein refolding for industrial processes. Current Opinion in Biotechnology. 2001;12(2):202–207. DOI: 10.1016/S0958-1669(00)00200-7.

17. Maiti M., Rao M., Sastry S. Competition between folding and aggregation in a model for protein solutions. The European Physical Journal E. 2010;32(2):217–221. DOI: 10.1140/epje/i2010-10621-4.

18. Brusotti G., Calleri E., Colombo R., Massolini G., Rinaldi F., Temporini C. Advances on Size Exclusion Chromatography and Applications on the Analysis of Protein Biopharmaceuticals and Protein Aggregates: A Mini Review. Chromatographia. 2018;81(1):3–23. DOI: 10.1007/s10337-017-3380-5.

19. Alam P., Siddiqi K., Kumar Chturvedi S., Khan R. H. Protein aggregation: From background to inhibition strategies. International Journal of Biological Macromolecules. 2017;103:208–219. DOI: 10.1016/j.ijbiomac.2017.05.048.

20. Gervais D. Protein deamidation in biopharmaceutical manufacture: understanding, control and impact. Journal of Chemical Technology & Biotechnology. 2016;91(3):569–575. DOI: 10.1002/jctb.4850.

21. Góngora-Benítez M., Tulla-Puche J., Albericio F. Multifaceted Roles of Disulfide Bonds. Peptides as Therapeutics. Chemical Reviews. 2014;114(2):901–926. DOI: 10.1021/cr400031z.

22. Wang T., Fodor S., Hapuarachchi S., Grace Jiang X., Chen K., Apostol I., Huang G. Analysis and characterization of aggregation of a therapeutic Fc-fusion protein. Journal of Pharmaceutical and Biomedical Analysis. 2013;72:59–64. DOI: 10.1016/j.jpba.2012.09.010.

23. Wiedemann C., Kumar A., Lang A., Ohlenschläger O. Cysteines and Disulfide Bonds as Structure-Forming Units: Insights From Different Domains of Life and the Potential for Characterization by NMR. Frontiers in Chemistry. 2020;8:280. DOI: 10.3389/fchem.2020.00280.

24. Yamaguchi H., Miyazaki M. Refolding Techniques for Recovering Biologically Active Recombinant Proteins from Inclusion Bodies. Biomolecules. 2014;4(1):235–251. DOI: 10.3390/biom4010235.

25. Walczak M. M., Dryer D. A., Jacobson D. D., Foss M. G., Flynn N. T. pH Dependent Redox Couple: An Illustration of the Nernst Equation. Journal of Chemical Education. 1997;74(10):1195.


Supplementary files

1. Графический абстракт
Subject
Type Other
View (1MB)    
Indexing metadata ▾

Review

For citations:


Astrelina P.S., Ishchuk S.A., Kabanova A.V., Drai R.V. Optimization of the Fc-fusion protein refolding method produced from the bacterial expression system. Drug development & registration. 2025;14(1):92-102. (In Russ.) https://doi.org/10.33380/2305-2066-2025-14-1-1889

Views: 4425


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)