Preview

Разработка и регистрация лекарственных средств

Расширенный поиск

Цеолиты и цеолитоподобные имидазольные каркасы в фармации (обзор)

https://doi.org/10.33380/2305-2066-2025-14-1-1920

Аннотация

Введение. Одним из примеров новых полимеров для систем направленной доставки являются цеолиты (ZEO) и цеолитоподобные имидазольные каркасы (ZIF). ZEO, обладающие высокой пористостью, адсорбционной способностью и физико-химической стабильностью, активно используются в промышленности, экологии, фармации и биомедицине. ZIF, как тип металлоорганического каркаса, отличаются высокой термической и химической устойчивостью, биосовместимостью и регулируемой пористостью, что делает их перспективными для доставки лекарств. Оба полимера благодаря своим свойствам открывают новые возможности для создания таргетных препаратов с пролонгированным действием и минимальными побочными эффектами. Цель данного обзора – охарактеризовать ZEO и ZIF как перспективные полимеры для систем направленной доставки и рассмотреть их основные свойства.

Текст. В статье рассмотрены строение и методы анализа цеолитов и цеолитоподобных имидазольных каркасов, способы их синтеза, механизм действия, области применения полимеров в качестве систем направленной доставки.

Заключение. В обзоре показано, что химические и физические свойства полимеров ZEO и ZIF позволяют разрабатывать эффективные системы направленной доставки лекарственных средств, применяемых в онкологии, офтальмологии, стоматологии и ортопедии. Низкая цитотоксичность, регулируемая загрузка пор полимеров и эффективность внутриклеточного таргетирования подтверждают перспективность использования ZEO и ZIF в медицине.

Об авторах

Е. О. Бахрушина
Федеральное государственное автономное образовательное учреждение высшего образования «Первый Московский государственный медицинский университет имени И. М. Сеченова» Министерства здравоохранения Российской Федерации (Сеченовский Университет)
Россия

119991, г. Москва, ул. Трубецкая, д. 8, стр. 2



Н. О. Белявский
Федеральное государственное автономное образовательное учреждение высшего образования «Первый Московский государственный медицинский университет имени И. М. Сеченова» Министерства здравоохранения Российской Федерации (Сеченовский Университет)
Россия

119991, г. Москва, ул. Трубецкая, д. 8, стр. 2



В. Н. Кузина
Федеральное государственное автономное образовательное учреждение высшего образования «Первый Московский государственный медицинский университет имени И. М. Сеченова» Министерства здравоохранения Российской Федерации (Сеченовский Университет)
Россия

119991, г. Москва, ул. Трубецкая, д. 8, стр. 2



А. И. Ходенок
Федеральное государственное автономное образовательное учреждение высшего образования «Первый Московский государственный медицинский университет имени И. М. Сеченова» Министерства здравоохранения Российской Федерации (Сеченовский Университет)
Россия

119991, г. Москва, ул. Трубецкая, д. 8, стр. 2



Н. Б. Демина
Федеральное государственное автономное образовательное учреждение высшего образования «Первый Московский государственный медицинский университет имени И. М. Сеченова» Министерства здравоохранения Российской Федерации (Сеченовский Университет)
Россия

119991, г. Москва, ул. Трубецкая, д. 8, стр. 2



Г. В. Раменская
Федеральное государственное автономное образовательное учреждение высшего образования «Первый Московский государственный медицинский университет имени И. М. Сеченова» Министерства здравоохранения Российской Федерации (Сеченовский Университет)
Россия

119991, г. Москва, ул. Трубецкая, д. 8, стр. 2



Список литературы

1. Moshoeshoe M., Nadiye-Tabbiruka M. S., Obuseng V. A. Review of the Chemistry, Structure, Properties and Applications of Zeolites. American Journal of Materials Science. 2017;7:196–221.

2. Furukawa H., Cordova K. E., O’Keeffe M., Yaghi O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science. 2013;341(6149):1230444. DOI: 10.1126/science.1230444.

3. Tanaka S., Tanaka Y. A. Simple Step toward Enhancing Hydrothermal Stability of ZIF-8. ACS Omega. 2019;4(22):19905–19912. DOI: 10.1021/acsomega.9b02812.

4. Kermanian M., Nadri S., Mohammadi P., Iravani S., Ahmadi N., Alinezhad V., Shokrgozar M.-A., Haddad M., Mostafavi E., Maleki A. Zeolitic imidazolate frameworks: From bactericidal properties to tissue regeneration. Journal of Controlled Release. 2023;359:326–346. DOI: 10.1016/j.jconrel.2023.06.002.

5. Bacakova L., Vandrovcova M., Kopova I., Jirka I. Applications of zeolites in biotechnology and medicine – a review. Biomaterials science. 2018;6(5)974–989.

6. Yazdi M. K., Zarrintaj P., Hosseiniamoli H., Mashhadzadeh A. H., Saeb M. R., Ramsey J. D., Ganjali M. R., Mozafari M. Zeolites for theranostic applications. Journal of Materials Chemistry B. 2020;8(28):5992–6012. DOI: 10.1039/d0tb00719f.

7. Cadar O., Senila M., Hoaghia M.-A., Scurtu D., Miu I., Levei E. A. Effects of Thermal Treatment on Natural Clinoptilolite-Rich Zeolite Behavior in Simulated Biological Fluids. Molecules. 2020;25(11):2570. DOI: 10.3390/molecules25112570.

8. Mastinu A., Kumar A., Maccarinelli G., Bonini S. A., Premoli M., Aria F., Gianoncelli A., Memo M. Zeolite clinoptilolite: Therapeutic virtues of an ancient mineral. Molecules. 2019;24(8)1517. DOI: 10.3390/molecules24081517.

9. Li L. J., Chu C.-H., Yu O. Y. Application of Zeolites and Zeolitic Imidazolate Frameworks in Dentistry – A Narrative Review. Nanomaterials. 2023;13(22):2973. DOI: 10.3390/nano13222973.

10. Серых А. И. Формирование, природа и физико-химические свойства катионных центров в каталитических системах на основе высококремнеземных цеолитов. Дис. ... д. хим. н. Москва; 2014. 47 с. Доступно по: https://www.dissercat.com/content/formirovanie-priroda-i-fiziko-khimicheskie-svoistva-kationnykh-tsentrov-v-kataliticheskikh-s. Ссылка активна на 30.08.2024.

11. Noviello M., Gattullo C. E., Faccia M., Paradiso V. M., Gambacorta G. Application of natural and synthetic zeolites in the oenological field. Food Research International. 2021;150:110737.

12. Pérez-Botella E., Valencia S., Rey F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chemical Reviews. 2022;122(24):17647–17695. DOI: 10.1021/acs.chemrev.2c00140.

13. Wan Y., Xu W., Ren X., Wang Y., Dong B., Wang L. Microporous frameworks as promising platforms for antibacterial strategies against oral diseases. Frontiers in Bioengineering and Biotechnology. 2020;8:628. DOI: 10.3389/fbioe.2020.00628.

14. Cheong Y.-W., Wong K.-L., Ooi B. S., Ling T. C., Khoerunnisa F., Ng E.-P. Effects of synthesis parameters on crystallization behavior of K-MER zeolite and its morphological properties on catalytic cyanoethylation reaction. Crystals. 2020;10(2):64. DOI: 10.3390/cryst10020064.

15. Jiang N., Shang R., Heijman S. G. J., Rietveld L. C. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review. Water Research. 2018;144:145–161. DOI: 10.1016/j.watres.2018.07.017.

16. Абдулмалек К. Х., Морозова Н. Н., Муртазин Н. Ф. Исследование фазово-минерального состава цеолитовых пород методом рентгенофазового анализа. Известия Казанского государственного архитектурно-строительного университета. 2019;2(48):219–228.

17. Кульпина Ю. Н., Прокофьев В. Ю., Гордина Н. Е., Хмылова О. Е., Петухова Н. В., Газахова С. И. Использование ИК-спектроскопии для изучения структуры низкомодульных цеолитов. Известия высших учебных заведений. Химия и химическая технология. 2017;60(5):44–50.

18. Patel J. P., Brook M. S., Kah M., Hamilton A. Global geological occurrence and character of the carcinogenic zeolite mineral, erionite: A review. Frontiers in Chemistry. 2022;10:1066565. DOI: 10.3389/fchem.2022.1066565.

19. Cangiotti M., Salucci S., Battistelli M., Falcieri E., Mattioli M., Giordani M., Ottaviani M. F. EPR, TEM and cell viability study of asbestiform zeolite fibers in cell media. Colloids and Surfaces B: Biointerfaces. 2018;161:147–155. DOI: 10.1016/j.colsurfb.2017.10.045.

20. Cangiotti M., Battistelli M., Salucci S., Falcieri E., Mattioli M., Giordani M., Ottaviani M. F. Electron paramagnetic resonance and transmission electron microscopy study of the interactions between asbestiform zeolite fibers and model membranes. Journal of Toxicology and Environmental Health, Part A. 2017;80(3):171–187. DOI: 10.1080/15287394.2016.1275901.

21. Ballirano P., Pacella A., Cremisini C., Nardi E., Fantauzzi M., Atzei D., Rossi A., Cametti G. Fe (II) segregation at a specific crystallographic site of fibrous erionite: A first step toward the understanding of the mechanisms inducing its carcinogenicity. Microporous and Mesoporous Materials. 2015;211:49–63.

22. Bloise A., Barca D., Gualtieri A. F., Pollastri S., Belluso E. Trace elements in hazardous mineral fibres. Environmental Pollution. 2016;216:314–323. DOI: 10.1016/j.envpol.2016.06.007.

23. Elizalde-González M. P., Mattusch J., Wennrich R., Morgenstern P. Uptake of arsenite and arsenate by clinoptilolite-rich tuffs. Microporous and Mesoporous Materials. 2001;46(2–3):277–286.

24. Beaucham C., King B., Feldmann K., Harper M., Dozier A. Assessing occupational erionite and respirable crystalline silica exposure among outdoor workers in Wyoming, South Dakota, and Montana. Journal of Occupational and Environmental Hygiene. 2018;15(6):455–465. DOI: 10.1080/15459624.2018.1447116.

25. Giordani M., Mattioli M., Ballirano P., Pacella A., Cenni M., Boscardin M., Valentini L. Geological occurrence, mineralogical characterization, and risk assessment of potentially carcinogenic erionite in Italy. Journal of Toxicology and Environmental Health, Part B. 2017;20(2):81–103. DOI: 10.1080/10937404.2016.1263586.

26. Pacella A., Ballirano P., Cametti G. Quantitative chemical analysis of erionite fibres using a micro-analytical SEM-EDX method. European Journal of Mineralogy. 2016;28(2):257–264. DOI: 10.1127/ejm/2015/0027-2497.

27. Croce A., Musa M., Allegrina M., Rinaudo C., Baris Y. I., Dogan A. U., Carbone M. Micro-Raman spectroscopy identifies crocidolite and erionite fibers in tissue sections. Journal of Raman Spectroscopy. 2013;44(10):1440–1445.

28. Furukawa H., Cordova K. E., O’Keeffe M., Yaghi O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science. 2013;341(6149):1230444. DOI: 10.1126/science.1230444.

29. Banerjee R., Phan A., Wang B., Knobler C., Furukawa H., O’Keeffe M., Yaghi O. M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO<sub>2</sub> capture. Science. 2008;319(5865):939–943.

30. Moggach S. A., Bennett T. D., Cheetham A. K. The effect of pressure on ZIF-8: increasing porepressure and the formation of a high-pressure phase at 1.47 GPa. Angewandte Chemie. 2009;121(38):7221–7223.

31. Fairen-Jimenez D., Moggach S. A., Wharmby M. T., Wright P.A., Parsons S., Düren T. Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. Journal of the American Chemical Society. 2011;133(23):8900–8902. DOI: 10.1021/ja202154j.

32. Sameni M., Moradbeigi P., Hosseini S., Ghaderian S. M. H., Jajarmi V., Miladipour A. H., Basati H., Abbasi M., Salehi M. ZIF-8 Nanoparticle: A Valuable Tool for Improving Gene Delivery in Sperm-Mediated Gene Transfer. Biological Procedures Online. 2024;26:4. DOI: 10.1186/s12575-024-00229-2.

33. Zhou L., Li N., Owens G., Chen Z. Simultaneous removal of mixed contaminants, copper and norfloxacin, from aqueous solution by ZIF-8. Chemical Engineering Journal. 2019;362:628–637. DOI: 10.1016/j.cej.2019.01.068.

34. de Moura Ferraz L. R., Gonçalves Alves Tabosa A. É., Souza da Silva Nascimento D. D., Silva Ferreira A., de Albuquerque Wanderley Sales V., Rodrigues Silva J. Y., Alves Júnior S., Araújo Rolim L., de Souza Pereira J. J., Rolim-Neto P. J. ZIF-8 as a promising drug delivery system for benznidazole: development, characterization, in vitro dialysis release and cytotoxicity. Scientific Reports. 2020;10:16815. DOI: 10.1038/s41598-020-73848-w.

35. Wallbridge S. P., Archer S., Elsegood M. R. J., Wagner J. L., Christie J. K., Dann S. E. An investigation into the adsorption mechanism of n-butanol by ZIF-8: a combined experimental and ab initio molecular dynamics approach. Physical Chemistry Chemical Physics. 2023;25:19911–19922.

36. Butova V. V., Polyakov V. A., Bulanova, Soldatov M. A., Yahia I. S., Zahran H. Y., Abd El-Rehim A. F., Garni H. E., Aboraia A. M., Soldatov A. V. MW synthesis of ZIF-65 with a hierarchical porous structure. Microporous and Mesoporous Materials. 2020;293:109685.

37. Butova V. V., Budnik A. P., Bulanova E. A., Soldatov A. V. New microwave-assisted synthesis of ZIF-8. Mendeleev Communications. 2016;26(1):43–44.

38. Cravillon J., Schröder C.A., Bux H., Rothkirch A., Caro J., Wiebcke M. Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm. 2012;14(2):492–498.

39. Jung B. K., Jun J. W., Hasan Z., Jhung S. H. Adsorptive removal of p-arsanilic acid from water using mesoporous zeolitic imidazolate framework-8. Chemical Engineering Journal. 2015;267:9–15.

40. Порываев А. С. Исследование МОКП ZIF-8 методом ЭПР спектроскопии с использованием инкапсулированного спинового зонда. Дис. ... канд. хим. наук. Новосибирск; 2021. 139 с. Доступно по: https://www.dissercat.com/content/issledovanie-mokp-zif-8-metodom-epr-spektroskopii-s-ispolzovaniem-inkapsulirovannogo-spinovo. Ссылка активна на 30.08.2024.

41. Cerri G., Farina M., Brundu A., Daković A., Giunchedi P., Gavini E., Rassu G. Natural zeolites for pharmaceutical formulations: Preparation and evaluation of a clinoptilolite-based material. Microporous and Mesoporous Materials. 2016;223:58–67.

42. Vinaches P., Bernardo-Gusmão K., Pergher S. B. C. An Introduction to Zeolite Synthesis Using Imidazolium-Based Cations as Organic Structure-Directing Agents. Molecules. 2017;22:1307.

43. Hao J., Milašin I.S., Eken Z. B., Mravak-Stipetic M., Pavelić K., Ozer F. Effects of Zeolite as a Drug Delivery System on Cancer Therapy: A Systematic Review. Molecules. 2021;26:6196.

44. Anthony J. L., Davis M. E. Assembly of Zeolites and Crystalline Molecular Sieves. In: Adachi M., Lockwood D. J., editors. Self-Organized Nanoscale Materials. New York: Springer Science; 2006. P. 159–185.

45. Souza I. M. S., García-Villén F., Viseras C., Perger S. B. C. Zeolites as Ingredients of Medicinal Products. Pharmaceutics. 2023;15(5):1352. DOI: 10.3390/pharmaceutics15051352.

46. Datt A., Ndiege N., Larsen S. C. Development of porous nanomaterials for applications in drug delivery and imaging. In: Nagarajan R., editor. Nanomaterials for Biomedicine. Washington: American Chemical Society; 2012. P. 239–258.

47. Казанцева Л. К., Сереткин Ю. В. Способ получения Цеолита NaY. Патент РФ на изобретение № RU2476378C1. 25.07.2011. Доступно по: https://patents.google.com/patent/RU2476378C1/ru. Ссылка активна на 30.08.2024.

48. Арипова М. Х., Кадиров О. Ш., Тиллаев С. У., Худайназаров Ж. О. У., Файзиева Ф. М., Рузиева Ф. О. Получение низкомодульных синтетических цеолитов на основе местного сырья. Universum: химия и биология. 2022;92(2–1):65–70.

49. Прокофьев В. Ю., Гордина Н. Е., Константинова Е. М., Храмцова А. П. Способ получения синтетического гранулированного цеолита NaP. Патент РФ на изобретение № 2652210. 10.07.2017.

50. Сахаутдинов Р. А., Соколова В. В. О синтезе цеолитов. Научный лидер. 2022;67(22):46–49.

51. Гордина Н. Е., Прокофьев В. Ю. Получение синтетического LTA цеолита из механоактивированных смесей метакаолина. Известия высших учебных заведений. Химия и химическая технология. 2013;56(10):79–84.

52. Zaarour M., Dong B., Naydenova I., Retoux R., Mintova S. Progress in zeolite synthesis promotes advanced applications. Microporous and Mesoporous Materials. 2014;189:11–21.

53. Corma A., Garcia H. Supramolecular host-guest systems in zeolites prepared by ship-in-a-bottle synthesis. European Journal of Inorganic Chemistry. 2004;2004(6):1143–1164.

54. Cundy C. S., Cox P. A. The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chemical reviews. 2003;103(3):663–702.

55. Kumar S., Wang Z., Penn R. L., Tsapatsis M. A structural resolution cryo-TEM study of the early stages of MFI growth. Journal of the American Chemical Society. 2008;130(51):17284–17286. DOI: 10.1021/ja8063167.

56. Derakhshankhah H., Jafari S., Sarvari S., Barzegari E., Moakedi F., Ghorbani M., Varnamkhasti B. S., Jaymand M., Izadi Z., Tayebi L. Biomedical applications of zeolitic nanoparticles, with an emphasis on medical interventions. International Journal of Nanomedicine. 2020;15:363–386. DOI: 10.2147/IJN.S234573.

57. Farías T., de Ménorval L. C., Zajac J., Rivera A. Adsolubilization of drugs onto natural clinoptilolite modified by adsorption of cationic surfactants. Colloids and Surfaces B: Biointerfaces. 2010;76(2):421–426.

58. Nezamzadeh-Ejhieh A., Tavakoli-Ghinani S. Effect of a nano-sized natural clinoptilolite modified by the hexadecyltrimethyl ammonium surfactant on cephalexin drug delivery. Comptes Rendus Chimie. 2014;17(1):49–61. DOI: 10.1016/j.crci.2013.07.009.

59. Lee Y. R., Jang M. S., Cho H. Y., Kwon H. J., Kim S., Ahn W. S. ZIF-8: a comparison of synthesis methods. Chemical Engineering Journal. 2015;271:276–280.

60. Wang Q., Sun Y., Li S., Zhang P., Yao Q. Synthesis and modification of ZIF-8 and its application in drug delivery and tumor therapy. RSC Advances. 2020;10(62):37600–37620. DOI: 10.1039/d0ra07950b.

61. Chen W., Du L., Wu C. Hydrothermal synthesis of MOFs. In: Yang J., Yang Y.-W. Metal-Organic frameworks for Biomedical Applications. Amsterdam: Elsevier; 2020. P. 141–57.

62. Thomas-Hillman I., Laybourn A., Dodds C., Kingman S. W. Realising the environmental benefits of metal–organic frameworks: recent advances in microwave synthesis. Journal of Materials Chemistry A. 2018;6(25):11564–11581.

63. Дейко Г. С., Кравцов Л. А., Давшан Н. А., Исаева В. И., Кустов Л. М. Cорбция ионов свинца на композитах на основе цеолитоподобных имидазолатных каркасов ZIF-8 и ZIF-67 и альгината кальция. Журнал физической химии. 2022;96(8):1180–1187.

64. Park K. S., Ni Z., Côté A. P., Choi J. Y., Huang R., Uribe-Romo F. J., Chae H. K., O'Keeffe M., Yaghi O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences. 2006;103(27):10186–10191. DOI: 10.1073/pnas.0602439103.

65. Chen W., Sun L., Li Q., Huo L., Zhao H. Defect-rich MoS<sub>2</sub>/r-GO hybrid via microwave-assisted solvothermal process for efficient electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy. 2020;45(3):22459–22468. DOI: 10.1016/j.ijhydene.2020.06.114.

66. Красников А. А., Львова Е. С., Курзина И. А. Синтез и исследование физико-химических свойств цеолитоподобных имидазолатных каркасов. Вестник Томского государственного университета. Химия. 2020;19:37–44.

67. Wijaya C. J., Ismadji S., Aparamarta H. W., Gunawan S. Facile and Green Synthesis of Starfruit-Like ZIF-L, and Its Optimization Study. Molecules. 2021;26(15):4416. DOI: 10.3390/molecules26154416.

68. Nurain A. S. Z., Wan S. W. N., Norhaniza Y., Mohd Y. M. Z., Rafidah H., Fauzi I. A. Synthesis of zeolitic imidazolate framework-8 (ZIF-8) using different solvents for lead and cadmium adsorption. Applied Nanoscience. 2023;13(6):4005–4019.

69. Shahsavari M., Mohammadzadeh Jahani P., Sheikhshoaie I., Tajik S., Aghaei Afshar A., Askari M. B., Salarizadeh P., Di Bartolomeo A., Beitollahi H. Green Synthesis of Zeolitic Imidazolate Frameworks: A Review of Their Characterization and Industrial and Medical Applications. Materials. 2022;15(2):447.

70. Sun B., He Y., Peng R., Chu S., Zuo J. Air-flow Impacting for Continuous, Highly Efficient, Large-Scale Mechanochemical Synthesis: a Proof-Of-Concept Study. ACS Sustainable Chemistry & Engineering. 2016;4:2122–2128.

71. Gugin N. Y., Villajos J. A., Dautain O., Maiwald M., Emmerling F. Optimizing the Green Synthesis of ZIF-8 by Reactive Extrusion Using In Situ Raman Spectroscopy. ACS Sustainable Chemistry & Engineering. 2023;11(13):5175–5183.

72. Stock N., Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chemical Reviews. 2012;112(2):933–969. DOI: 10.1021/cr200304e.

73. Cho H.-Y., Kim J., Kim S.-N., Ahn W.-S. High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Microporous and Mesoporous Materials. 2013;169:180–184. DOI: 10.1016/j.micromeso.2012.11.012.

74. Haider J., Shahzadi A., Akbar M. U., Hafeez I., Shahzadi I., Khalid A., Ashfaq A., Ahmad S. O. A., Dilpazir S., Imran M. Ikram M., Ali G., Khan M., Khan Q., Maqbool M. A review of synthesis, fabrication, and emerging biomedical applications of metal-organic frameworks. Biomaterials Advances. 2022;140:213049. DOI: 10.1016/j.bioadv.2022.213049.

75. Kukkar P., Kim K.-H., Kukkar D., Singh P. Recent advances in the synthesis techniques for zeolitic imidazolate frameworks and their sensing applications. Coordination Chemistry Reviews. 2021;446:214109.

76. Макаров А. В., Синеговская Л. М., Корчевин Н. А. Физико-химические исследования процесса адсорбции ионов тяжелых металлов на модифицированных алюмосиликатах. iPolytech Journal. 2013;73(2):147–154.

77. Лухнева О. Л., Чикин А. Ю., Пройдакова О. А. Природа взаимодействия ионов металлов с минеральными сорбентами в процессе доочистки сточных вод гальванических цехов. iPolytech Journal. 2010;45(5):194–197.

78. Deyko G. S., Kravtsov L. A., Davshan N. A., Isaeva V. I., Kustov L. M. Sorption of lead ions on ZIF-8 and ZIF-67 zeolite imidazolate frameworks and calcium alginate composites. Russian Journal of Physical Chemistry. 2022;96(8):1728–1735.

79. Jung B. K., Jun J. W., Hasan Z., Jhung S. H. Adsorptive removal of p-arsanilic acid from water using mesoporous zeolitic imidazolate framework-8. Chemical Engineering Journal. 2015;267:9–15.

80. Haghi A., Raissi H., Hashemzadeh H., Farzad F. Designing a high-performance smart drug delivery system for the synergetic co-absorption of DOX and EGCG on ZIF-8. RSC Advances. 2020;10(72):44533–44544.

81. Manousi N., Giannakoudakis D. A., Rosenberg E., Zachariadis G. A. Extraction of Metal Ions with Metal-Organic Frameworks. Molecules. 2019;24(24):4605.

82. Дейко Г. С., Кравцов Л. А., Давшан Н. А., Исаева В. И., Кустов Л. М. Cорбция ионов свинца на композитах на основе цеолитоподобных имидазолатных каркасов ZIF-8 и ZIF-67 и альгината кальция. Журнал физической химии. 2022;96(8):1180–1187.

83. Zhuang J., Kuo C.-H., Chou L.-Y., Liu D.-Y., Weerapana E., Tsung C.-K. Optimized metal-organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano. 2014;8(3):2812–2819. DOI: 10.1021/nn406590q.

84. Wu Q., Niu M., Chen X., Tan L., Fu C., Ren X., Ren J., Li L., Xu K., Zhong H. Biocompatible and biodegradable zeolitic imidazolate framework/polydopamine nanocarriers for dual stimulus triggered tumor thermo-chemotherapy. Biomaterials. 2018;162:132–143.

85. Chen B., Yang Z. Zeolitic imidazolate framework materials: Recent progress in synthesis and applications. Journal of Materials Chemistry A. 2014;2:16811–16831.

86. Xie R., Yang P., Peng S., Cao Y., Yao X., Guo S., Yang W. A phosphorylcholine-based zwitterionic copolymer coated ZIF-8 nanodrug with a long circulation time and charged conversion for enhanced chemotherapy. Journal of Materials Chemistry B. 2020;8:6128–6138.

87. Deria P., Mondloch J. E., Karagiaridi O., Bury W., Hupp J. T., Farha O. K. Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. Chemical Society Reviews. 2014;43(16):5896–5912.

88. Abdelhamid H. N. Zeolitic Imidazolate Frameworks (ZIF-8) for Biomedical Applications: A Review. Current Medicinal Chemistry. 2021;28(34):7023–7075. DOI: 10.2174/0929867328666210608143703.

89. Keskin S., Kızılel S. Biomedical applications of metal organic frameworks. Industrial & Engineering Chemistry Research. 2011;50(4):1799–1812.

90. Singh R., Prasad A., Kumar B., Kumari S., Sahu R. K., Hedau S. T. Potential of dual drug delivery systems: MOF as hybrid nano-carrier for dual drug delivery in cancer treatment. ChemistrySelect. 2022;7(36):e202201288.

91. Дьячкова Т. Ю., Макарова И. А., Ваганова Е. С., Давыдова О. А., Мосунова Т. В. Сорбционная очистка растворов от ионов тяжелых металлов с применением цеолита, модифицированного углеродными нанотрубками. Вестник Южно-Уральского государственного университета. Серия: Химия. 2019;11(2):16–27.

92. Макаров А. В. Адсорбция тяжелых металлов модифицированными цеолитами. Современные технологии и научно-технический прогресс. 2013;1:25.

93. Manousi N., Giannakoudakis D. A., Rosenberg E., Zachariadis G. A. Extraction of metal ions with metal–organic frameworks. Molecules. 2019;24(24):4605.

94. Hao J., Stavljenić Milašin I., Batu Eken Z., Mravak-Stipetic M., Pavelić K., Ozer F. Effects of Zeolite as a Drug Delivery System on Cancer Therapy: A Systematic Review. Molecules. 2021;26(20):6196. DOI: 10.3390/molecules26206196.

95. Saravanan M., Kumar V., Padmanabhan T. V., Banu F. Viscoelastic properties and antimicrobial effects of soft liners with silver zeolite in complete dental prosthesis wearers: an in vivo study. The International Journal of Prosthodontics. 2015;28(3):265–269. DOI: 10.11607/ijp.3740.

96. Pourhajibagher M., Bahador A. Enhanced reduction of polymicrobial biofilms on the orthodontic brackets and enamel surface remineralization using zeolite-zinc oxide nanoparticles-based antimicrobial photodynamic therapy. BMC Microbiol. 2021;21(1):273. DOI: 10.1186/s12866-021-02324-w.

97. Hajipour M. J., Fromm K. M., Ashkarran A. A., Jimenez de Aberasturi D., de Larramendi I. R., Rojo T., Serpooshan V., Parak W. J., Mahmoudi M. Antibacterial properties of nanoparticles. Trends in Biotechnology. 2012;30(10):499–511. DOI: 10.1016/j.tibtech.2012.06.004.

98. Alswat A. A., Ahmad M. B., Saleh T. A., Hussein M. Z. B., Ibrahim N. A. Effect of zinc oxide amounts on the properties and antibacterial activities of zeolite/zinc oxide nanocomposite. Materials science & engineering. C, Materials for biological applications. 2016;68:505–511. DOI: 10.1016/j.msec.2016.6.028.

99. Alswat A. A., Ahmad M. B., Saleh T. A. Preparation and characterization of zeolitezinc oxide-copper oxide nanocomposite: antibacterial activities. Colloid and Interface Science Communications. 2017;16:19–24.

100. Kihara T., Zhang Y., Hu Y., Mao Q., Tang Y, Miyake J. Effect of composition, morphology and size of nanozeolite on its in vitro cytotoxicity. Journal of Bioscience and Bioengineering. 2011;111(6):725–730. DOI: 10.1016/j.jbiosc.2011.01.017.

101. Yang F., Wen X., Ke Q.-F., Xie X.-T., Guo Y.-P. pH-responsive mesoporous ZSM-5 zeolites/chitosan core-shell nanodisks loaded with doxorubicin against osteosarcoma. Materials Science and Engineering: C. 2018;85:142–153. DOI: 10.1016/j.msec.2017.12.024.

102. Lei Z., Tang Q., Ju Y., Lin Y., Bai X., Luo H., Tong Z. Block copolymer@ZIF-8 nanocomposites as a pH-responsive multi-steps release system for controlled drug delivery. Journal of Biomaterials Science, Polymer Edition. 2020;31(6):695–711. DOI: 10.1080/09205063.2020.1713451.

103. Hao J., Stavljenić Milašin I., Batu Eken Z., Mravak-Stipetic M., Pavelić K., Ozer F. Effects of Zeolite as a Drug Delivery System on Cancer Therapy: A Systematic Review. Molecules. 2021;26:6196. DOI: 10.3390/molecules26206196.

104. Tan C., Wu J., Wen Z. Doxorubicin-Loaded MnO 2 @Zeolitic Imidazolate Framework-8 Nanoparticles as a Chemophotothermal System for Lung Cancer Therapy. ACS Omega. 2021;6(20):12977–12983. DOI: 10.1021/acsomega.0c05922.

105. Sharsheeva A., Iglin, V. A., Nesterov P. V., Kuchur O. A., Garifullina E., Hey-Hawkins E., Ulasevich S. A., Skorb E. V., Vinogradov A. V., Morozov M. I. Light-controllable systems based on TiO(2)-ZIF-8 composites for targeted drug release: Communicating with tumour cells. Current Gene Therapy. 2019;7:6810–6821.

106. Kang Y., Yu X., Fan X., Aodenggerile, Zhao S., Tu C., Yan Z., Wang R., Li W., Qiu H. Tetramodal Imaging and Synergistic Cancer Radio-Chemotherapy Enabled by Multiple Component-Encapsulated Zeolitic Imidazolate Frameworks. ACS Nano. 2020;14:4336–4351.

107. Li X., Hou S., Chen J., He C.-E., Gao Y.-E., Lu Y., Jia D., Ma X., Xue P., Kang Y., Xu Z. Engineering silk sericin decorated zeolitic imidazolate framework-8 nanoplatform to enhance chemotherapy. Colloids and Surfaces B: Biointerfaces. 2021;200:111594. DOI: 10.1016/j.colsurfb.2021.111594.

108. Guo H., Mukwaya V., Wu D., Xiong S., Dou H. Acid-Responsive Decomposable Nanomedicine Based on Zeolitic Imidazolate Frameworks for Near-Infrared Fluorescence Imaging/Chemotherapy Combined Tumor Theranostics. Pharmaceutics. 2024;16(6):823. DOI: 10.3390/pharmaceutics16060823.

109. Adhikari C., Das A., Chakraborty A. Zeolitic imidazole framework (ZIF) nanospheres for easy encapsulation and controlled release of an anticancer drug doxorubicin under different external stimuli: a way toward smart drug delivery system. Mol. Pharmaceutics. 2015;12:3158–3166.

110. Wen X., Yang F., Ke Q.-F., Xie X.-T., Guo Y.-P. Hollow mesoporous ZSM-5 zeolite/chitosan ellipsoids loaded with doxorubicin as pH-responsive drug delivery systems against osteosarcoma. Journal of Materials Chemistry B. 2017;5:7866–7875.

111. Khatamian M., Divband B., Farahmand-Zahed F. Synthesis and characterization of Zinc (II)-loaded Zeolite/Graphene oxide nanocomposite as a new drug carrier. Materials Science and Engineering C: Materials for Biological Applications. 2016;66:251–258.

112. Abasian P., Radmansouri M., Habibi Jouybari M., Ghasemi M. V., Mohammadi A., Irani M., Jazi F. S. Incorporation of magnetic NaX zeolite/DOX into the PLA/chitosan nanofibers for sustained release of doxorubicin against carcinoma cells death in vitro. International Journal of Biological Macromolecules. 2019;121:398–406.

113. Zheng L., Zhang Y., Lin H., Kang S., Li Y., Sun D., Chen M., Wang Z., Jiao Z., Wang Y. Ultrasound and Near-Infrared Light Dual-Triggered Upconversion Zeolite-Based Nanocomposite for Hyperthermia-Enhanced Multimodal Melanoma Therapy via a Precise Apoptotic Mechanism. ACS Applied Materials & Interfaces. 2020;12:32420–32431.

114. deKrafft K. E., Xie Z., Cao G., Tran S., Ma L., Zhou O. Z., Lin W. Iodinated Nanoscale Coordination Polymers as Potential Contrast Agents for Computed Tomography. Angewandte Chemie International Edition. 2009;48(52):9901–9904. DOI: 10.1002/anie.200904958.

115. Yan L., Chen X., Wang Z., Zhang X., Zhu X., Zhou M., Chen W., Huang L., Roy V. A. L., Yu P. K. N. Zhu G., Zhang W. Size Controllable and Surface Tunable Zeolitic Imidazolate Framework-8-Poly(acrylic acid sodium salt) Nanocomposites for pH Responsive Drug Release and Enhanced in Vivo Cancer Treatment. ACS Applied Materials & Interfaces. 2017;9(38):32990–33000.

116. Duan D., Liu H., Xu M., Chen M., Han Y., Shi Y., Liu Z. Size-Controlled Synthesis of Drug-Loaded Zeolitic Imidazolate Framework in Aqueous Solution and Size Effect on Their Cancer Theranostics in Vivo. ACS Applied Materials & Interfaces. 2018;10(49):42165–42174. DOI: 10.1021/acsami.8b17660.

117. Longley D. B., Harkin D. P., Johnston P. G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nature Reviews Cancer. 2013;3(5):330–338. DOI: 10.1038/nrc1074.

118. Cao Y., Jiang Z., Li Y., Wang Y., Yang Y., Akakuru O. U., Li J., Wu A. Tandem post-synthetic modification of a zeolitic imidazolate framework for CXCR4-overexpressed esophageal squamous cell cancer imaging and therapy. Nanoscale. 2020;12:12779-12789.

119. Jiang Z., Li Y., Wei Z., Yuan B., Wang Y., Akakuru O. U., Li Y., Li J., Wu A. Pressure-induced amorphous zeolitic imidazole frameworks with reduced toxicity and increased tumor accumulation improves therapeutic efficacy In vivo. Bioactive Materials. 2021;6(3):740–748.

120. Pandey A., Kulkarni S., Vincent A. P., Nannuri S. H., George S. D., Mutalik S. Hyaluronic acid-drug conjugate modified core-shell MOFs as pH responsive nanoplatform for multimodal therapy of glioblastoma. International Journal of Pharmaceutics. 2020;588:119735. DOI: 10.1016/j.ijpharm.2020.119735.

121. Xiao X., Liang S., Zhao Y., Huang D., Xing B., Cheng Z., Lin J. Core-shell structured 5-FU-ZIF-90-ZnO as a biodegradable nanoplatform for synergistic cancer therapy. Nanoscale. 2020;12:3846–3854.

122. Vilaça N., Amorim R., Machado A. F., Parpot P., Pereira M. F., Sardo M., Rocha J., Fonseca A. M., Neves I. C., Baltazar F. Potentiation of 5-fluorouracil encapsulated in zeolites as drug delivery systems for in vitro models of colorectal carcinoma. Colloids and Surfaces B: Biointerfaces. 2013;112:237–244.

123. Sagir T., Huysal M., Durmus Z., Kurt B. Z., Senel M., Isık S. Preparation and in vitro evaluation of 5-fluorouracil loaded magnetite-zeolite nanocomposite (5-FU-MZNC) for cancer drug delivery applications. Biomedicine & Pharmacotherapy. 2016;77:182–190.

124. Abd-Elsatar A. G., Farag M. M., Youssef H. F., Salih S. A., Mounier M. M., El-Meliegy E. Different zeolite systems for colon cancer therapy: Monitoring of ion release, cytotoxicity and drug release behavior. Progress in Biomaterials. 2019;8(2):101–113. DOI: 10.1007/s40204-019-0115-8.

125. Imran M., Ullah A., Saeed F., Nadeem M., Arshad M .U., Suleria H. Cucurmin anticancer, & antitumor perspectives: A comprehensive review. Critical Reviews in Food Science and Nutrition. 2018;58:1271–1293.

126. Zheng M., Liu S., Guan X., Xie Z. One-Step Synthesis of Nanoscale Zeolitic Imidazolate Frameworks with High Curcumin Loading for Treatment of Cervical Cancer. ACS Applied Materials & Interfaces. 2015;7:22181–22187.

127. Xing Y., Jiang Z., Akakuru O. U., He Y., Li A., Li J., Wu A. Mitochondria-targeting zeolitic imidazole frameworks to overcome platinum-resistant ovarian cancer. Colloids and Surfaces B: Biointerfaces. 2020;189:110837.

128. Amorim R., Vilaça N., Martinho O., Reis R. M., Sardo M., Rocha J., Fonseca A. M., Baltazar F., Neves I. C. Zeolite Structures Loading with an Anticancer Compound as Drug Delivery Systems. The Journal of Physical Chemistry A. 2012;116:25642–25650.

129. Kannen H., Nomura S., Hazama H., Kaneda Y., Fujino T., Awazu K. Enhancement of Ionization Efficiency Using Zeolite in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Multiple Drugs in Cancer Cells (Mass Spectrometry of Multiple Drugs in Cells Using Zeolite). Mass Spectrometry. 2020;9(1):A0091. DOI: 10.5702/massspectrometry.A0091.

130. Martinho O., Vilaça N., Castro P. J., Amorim R., Fonseca A. M., Baltazar F., Reis R. M., Neves I. C. In vitro and in vivo studies of temozolomide loading in zeolite structures as drug delivery systems for glioblastoma. RSC Advances. 2015;5:28219–28227.

131. Khojaewa V., Lopatin O., Zelenikhin P., Ilinskaya O. Zeolites as Carriers of Antitumor Ribonuclease Binase. Frontiers in Pharmacology. 2019;10:442. DOI: 10.3389/fphar.2019.00442.

132. Souza I. M. S., García-Villén F., Viseras C., Pergher S. B. C. Zeolites as Ingredients of Medicinal Products. Pharmaceutics. 2023;15(5):1352. DOI: 10.3390/pharmaceutics15051352.

133. Guo Y. P., Long T., Song Z. F., Zhu Z. A. Hydrothermal Fabrication of ZSM-5 Zeolites: Biocompatibility, Drug Delivery Property, and Bactericidal Property. Journal of Biomedical Materials Research – Part B Applied Biomaterials. 2014;102:583–591.

134. Yassue-Cordeiro P. H., Zandonai C. H., Genesi B. P., Lopes P. S., Sanchez-Lopez E., Garcia M. L., Fernandes-Machado N. R. C., Severino P., Souto E. B., da Silva C. F. Development of Chitosan/Silver Sulfadiazine/Zeolite Composite Films for Wound Dressing. Pharmaceutics. 2019;11:535.

135. Szegedi Á., Popova M., Trendafilova I., Trif L., Mihály J., Makk J., Mavrodinova V. Bicomponent Drug Formulation for Simultaneous Release of Ag and Sulfadiazine Supported on Nanosized Zeolite Beta. Nano-Structures & Nano-Objects. 2020;24:100562.

136. Moradi S., Barati A., Tonelli A. E., Hamedi H. Effect of Clinoptilolite on Structure and Drug Release Behavior of Chitosan/Thyme Oil Γ-Cyclodextrin Inclusion Compound Hydrogels. Journal of Applied Polymer Science. 2021;138:49822.

137. Kocaaga B., Kurkcuoglu O., Tatlier M., Batirel S., Guner F. S. Low-Methoxyl Pectin–Zeolite Hydrogels Controlling Drug Release Promote In Vitro Wound Healing. Journal of Applied Polymer Science. 2019;136:47640.

138. Kocaaga B., Kurkcuoglu O., Tatlier M., Dinler-Doganay G., Batirel S., Güner, F. S. Pectin–Zeolite-Based Wound Dressings with Controlled Albumin Release. Polymers. 2022;14:460.

139. Youssefi Azarfam M., Nasirinezhad M., Naeim H., Zarrintaj P., Saeb M. A Green Composite Based on Gelatin/Agarose/Zeolite as a Potential Scaffold for Tissue Engineering Applications. Journal of Composites Science. 2021;5(5):125. DOI: 10.3390/jcs5050125.

140. Wise A. J., Sefy J. S., Barbu E., O’Malley A. J., van der Merwe S. M., Cox P. A. Zero-Order and Prolonged Release of Atenolol from Microporous FAU and BEA Zeolites, and Mesoporous MCM-41: Experimental and Theoretical Investigations. Journal of Controlled Release. 2020;327:140–149. DOI: 10.1016/j.jconrel.2020.07.027.

141. Souza I. M. S., Sainz-Díaz C. I., Viseras C., Pergher S. B. C. Adsorption Capacity Evaluation of Zeolites as Carrier of Isoniazid. Microporous and Mesoporous Materials. 2020;292:109733. DOI: 10.1016/j.micromeso.2019.109733.

142. Souza I. M. S., Borrego-Sánchez A., Sainz-Díaz C. I., Viseras C., Pergher S. B. C. Study of Faujasite Zeolite as a Modified Delivery Carrier for Isoniazid. Materials Science and Engineering: C. 2021;118:111365. DOI: 10.1016/j.msec.2020.111365.

143. Souza I. M. S., Borrego-Sánchez A., Rigoti E., Sainz-Díaz C. I., Viseras C., Pergher S. B. C. Experimental and Molecular Modelling Study of Beta Zeolite as Drug Delivery System. Microporous and Mesoporous Materials. 2021;321:111152. DOI: 10.1016/j.micromeso.2021.111152.

144. Karavasili C., Kokove L., Kontopoulou I., Eleftheriadis G. K., Bouropoulos N., Fatouros D. G. Dissolution Enhancement of the Poorly Soluble Drug Nifedipine by Co-Spray Drying with Microporous Zeolite Beta. Journal of Drug Delivery Science and Technology. 2016;35:91–97.

145. Karavasili C., Amanatiadou E. P., Kontogiannidou E., Eleftheriadis G. K., Bouropoulos N., Pavlidou E., Kontopoulou I., Vizirianakis I. S., Fatouros D. G. Comparison of Different Zeolite Framework Types as Carriers for the Oral Delivery of the Poorly Soluble Drug Indomethacin. International Journal of Pharmaceutics. 2017;528:76–87.

146. Kontogiannidou E., Karavasili C., Kouskoura M. G., Filippousi M., Van Tendeloo G., Andreadis I. I., Eleftheriadis G. K., Kontopoulou I., Markopoulou C. K., Bouropoulos N. In Vitro and Ex Vivo Assessment of Microporous Faujasite Zeolite (NaX-FAU) as a Carrier for the Oral Delivery of Danazol. Journal of Drug Delivery Science and Technology. 2019;51:177–184.

147. Yaneva Z., Ivanova D., Popov N. Clinoptilolite Microparticles as Carriers of Catechin-Rich Acacia Catechu Extracts: Microencapsulation and In Vitro Release Study. Molecules. 2021;26:1655.

148. Rimoli M. G., Rabaioli M. R., Melisi D., Curcio A., Mondello S., Mirabelli R., Abignente E. Synthetic Zeolites as a New Tool for Drug Delivery. Journal of Biomedical Materials Research Part A. 2008;87(1):156–164. DOI: 10.1002/jbm.a.31763.

149. Khodaverdi E., Soleimani H. A., Mohammadpour F., Hadizadeh F. Synthetic Zeolites as Controlled-Release Delivery Systems for Anti-Inflammatory Drugs. Chemical Biology & Drug Design. 2016;87:849–857.

150. Khodaverdi E., Honarmandi R., Alibolandi M., Baygi R. R., Hadizadeh F., Zohuri G. Evaluation of synthetic zeolites as oral delivery vehicle for anti-inflammatory drugs. The Iranian Journal of Basic Medical Sciences. 2014;17(5):337–343.

151. Datt A., Fields D., Larsen S. C. An experimental and computational study of the loading and release of aspirin from zeolite HY. The Journal of Physical Chemistry C. 2012;116(40):21382–21390. DOI: 10.1021/jp3067266.

152. Dyer A., Morgan S., Wells P., Williams C. The Use of Zeolites as Slow Release Anthelmintic Carriers. Journal of Helminthology. 2000;74:137–141.

153. Sandomierski M., Zielińska, M., Voelkel, A. Calcium Zeolites as Intelligent Carriers in Controlled Release of Bisphosphonates. International Journal of Pharmaceutics. 2020;578:119117.

154. Neolaka Y. A. B., Darmokoesoemo H., Adu A. A., Lawa Y., Naat J., Riwu A. A. P., Bui M. F., Wila E. C., Fahirah M. A., Budiastant T. A. Study of Mordenite Natural Zeolite Type Modified by Cu(II) Cation as an Oral Safe Drug Carrier for Ibuprofen and Meloxicam. Journal of Molecular Liquids. 2022;352:118734.

155. Nezamzadeh-Ejhieh A., Tavakoli-Ghinani S. Effect of a Nano-Sized Natural Clinoptilolite Modified by the Hexadecyltrimethyl Ammonium Surfactant on Cephalexin Drug Delivery. Comptes Rendus Chimie. 2014;17:49–61.

156. de Gennaro B., Catalanotti L., Cappelletti P., Langella A., Mercurio M., Serri C., Biondi M., Mayol L. Surface Modified Natural Zeolite as a Carrier for Sustained Diclofenac Release: A Preliminary Feasibility Study. Colloids and Surfaces B: Biointerfaces. 2015;130:101-109.

157. Krajišnik D., Daković A., Malenović A., Kragović M., Milić J. Ibuprofen Sorption and Release by Modified Natural Zeolites as Prospective Drug Carriers. Clay Minerals. 2015;50:11–22.

158. Pasquino R., Di Domenico M., Izzo F., Gaudino D., Vanzanella V., Grizzuti N., de Gennaro B. Rheology-Sensitive Response of Zeolite-Supported Anti-Inflammatory Drug Systems. Colloids Surf. B Biointerfaces. 2016;146:938–944.

159. Izzo F., Mercurio M., de Gennaro B., Aprea P., Cappelletti P., Daković A., Germinario C., Grifa C., Smiljanic D., Langella A. Surface Modified Natural Zeolites (SMNZs) as Nanocomposite Versatile Materials for Health and Environment. Colloids and Surfaces B: Biointerfaces. 2019;182:110380.

160. Sandomierski M., Jakubowski M., Ratajczak M., Voelkel A. Zeolitic Imidazolate Framework-8 (ZIF-8) modified titanium alloy for controlled release of drugs for osteoporosis. Scientific Reports. 2022;12(1):9103. DOI: 10.1038/s41598-022-13187-0.

161. Li Y., Cai Y., Chen T., Bao X. Zeolites: A series of promising biomaterials in bone tissue engineering. Frontiers in Bioengineering and Biotechnology. 2022;10:1066552. DOI: 10.3389/fbioe.2022.1066552.

162. Aslani Z., Nazemi N., Rajabi N., Kharaziha M., Bakhsheshi-Rad H. R., Kasiri-Asgarani M., Najafinezhad A., Ismail A. F., Sharif S., Berto F. Antibacterial Activity and Cell Responses of Vancomycin-Loaded Alginate Coating on ZSM-5 Scaffold for Bone Tissue Engineering Applications. Materials. 2022;15(14):4786. DOI: 10.3390/ma15144786.

163. Chebbi M., Azambre B., Cantrel L., Huvé M., Albiol T. Influence of structural, textural and chemical parameters of silver zeolites on the retention of methyl iodide. Microporous and Mesoporous Materials. 2017;244:137–150.

164. Singh S. Zinc oxide nanoparticles impacts: Cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicology Mechanisms and Methods. 2019;29:300–311.

165. Sirelkhatim A., Mahmud S., Seeni A., Kaus N. H. M., Ann L. C., Bakhori S. K. M., Hasan H., Mohamad D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Letters. 2015;7:219–242.

166. Buchwald Z., Sandomierski M., Voelkel A. Calcium-Rich 13X Zeolite as a Filler with Remineralizing Potential for Dental Composites. ACS Biomaterials Science & Engineering. 2020;6(7):3843–3854. DOI: 10.1021/acsbiomaterials.0c00450.

167. Kim H.-J., Son J. S., Kim K.-H., Kwon T.-Y. Antimicrobial Activity of Glass Ionomer Cement Incorporated with Chlorhexidine-Loaded Zeolite Nanoparticles. Journal of Nanoscience and Nanotechnology. 2016;16(2):1450–1453. DOI: 10.1166/jnn.2016.11915.

168. Nikawa H., Yamamoto T., Hamada T., Rahardjo M. B., Murata H., Nakanoda S. Antifungal effect of zeolite-incorporated tissue conditioner against Candida albicans growth and/or acid production. Journal of Oral Rehabilitation. 2008;24:350–357. DOI: 10.1111/j.1365-2842.1997.tb00339.x.

169. Çinar Ç., Odabaş M., Gürel M. A., Baldağ I. The effects of incorporation of silver-zeolite on selected properties of mineral trioxide aggregate. Dental Materials Journal. 2013;32(6):872–876. DOI: 10.4012/dmj.2012-314.

170. Ghatole K., Patil A., Giriyappa R. H., Singh T. V., Jyotsna S. V., Rairam S. Evaluation of Antibacterial Efficacy of MTA with and without Additives Like Silver Zeolite and Chlorhexidine. Journal of Clinical and Diagnostic Research. 2016;10(6):11–14. DOI: 10.7860/JCDR/2016/18014.7913.

171. Bedi R. S., Beving D. E., Zanello L. P., Yan Y. Biocompatibility of corrosion-resistant zeolite coatings for titanium alloy biomedical implants. Acta Biomaterialia. 2009;5(8):3265–3271. DOI: 10.1016/j.actbio.2009.04.019.

172. Zhang X., Chen J., Pei X., Wang J., Wan Q., Jiang S., Huang C., Pei X. Enhanced Osseointegration of Porous Titanium Modified with Zeolitic Imidazolate Framework-8. ACS Applied Materials & Interfaces. 2017;9:25171–25183. DOI: 10.1021/acsami.7b07800.

173. Chen J., Zhang X., Huang C., Cai H., Hu S., Wan Q., Pei X., Wang J. Osteogenic activity and antibacterial effect of porous titanium modified with metal-organic framework films. Journal of Biomedical Materials Research Part A. 2016;105:834–846. DOI: 10.1002/jbm.a.35960.

174. Kraljević Pavelić S., Simović Medica J., Gumbarević D., Filošević A., Pržulj N., Pavelić K. Critical Review on Zeolite Clinoptilolite Safety and Medical Applications in vivo. Frontiers in Pharmacology. 2018;9:1350. DOI: 10.3389/fphar.2018.01350.

175. Mastinu A., Kumar A., Maccarinelli G., Bonini S. A., Premoli M., Aria F., Gianoncelli A., Memo M. Zeolite Clinoptilolite: Therapeutic Virtues of an Ancient Mineral. Molecules. 2019;24(8):1517. DOI: 10.3390/molecules24081517.

176. Pavelić K., Hadžija M., Bedrica L., Pavelić J., Ðikić I., Katić M., Kralj M., Bosnar M. H., Kapitanović S., Poljak-Blaži M., Križanac Š., Stojković R., Jurin M., Subotić B., Čolić M. Natural zeolite clinoptilolite: new adjuvant in anticancer therapy. Journal of Molecular Medicine. 2001;78:708–720. DOI: 10.1007/s001090000176.

177. Pavelic K., Katic M., Sverko V., Marotti T., Bosnjak B., Balog T., Stojkovic R., Radacic M., Colic M., Poljak-Blazi M. Immunostimulatory effect of natural clinoptilolite as a possible mechanism of its antimetastatic ability. Journal of Cancer Research and Clinical Oncology. 2002;128(1):37–44. DOI: 10.1007/s00432-001-0301-6.

178. Demirer E., Ghattas C. F., Radwan M. O., Elamin E. M. Clinical and prognostic features of erionite-induced malignant mesothelioma. Yonsei Medical Journal. 2015;56(2):311–323. DOI: 10.3349/ymj.2015.56.2.311.

179. Attanoos R. L., Churg A., Galateau-Salle F., Gibbs A. R., Roggli V. L. Malignant Mesothelioma and Its Non-Asbestos Causes. Archives of Pathology & Laboratory Medicine. 2018;142(6):753–760. DOI: 10.5858/arpa.2017-0365-RA.

180. Iarc monographs on the evaluation of carcinogenic risks to humans. Lyon: World health organization; 1987. 449 p.

181. Dogan A. U., Baris Y. I., Dogan M., Emri S., Steele I., Elmishad A. G., Carbone M. Genetic predisposition to fiber carcinogenesis causes a mesothelioma epidemic in Turkey. Cancer Research. 2006;66(10):5063–5068. DOI: 10.1158/0008-5472.CAN-05-4642.

182. Patel J. P., Brook M. S. Erionite asbestiform fibres and health risk in Aotearoa/New Zealand: A research note. New Zealand Geographer. 2021;77(2):123–129.

183. Fach E., Kristovich R., Long J. F., Waldman W. J., Dutta P. K., Williams M. V. The effect of iron on the biological activities of erionite and mordenite. Environment International. 2003;29(4):451–458. DOI: 10.1016/S0160-4120(02)00193-9.

184. Dogan A. U., Dogan M. Re-evaluation and re-classification of erionite series minerals. Environmental Geochemistry and Health. 2008;30(4):355–366. DOI: 10.1007/s10653-008-9163-z.

185. Kshirsagar P., Miranda-Avilés R., Loza-Aguirre I., Li Y., Alquiza M. J. P. Y., Moncada-Sánchez C. D., Hernández-Jiménez A. Erionite series minerals in felsic volcanic rocks of southern Mesa Central, Guanajuato, Mexico. Environmental Earth Sciences. 2021;80(19):1–21.

186. Reid G., Klebe S., van Zandwijk N., George A. M. Asbestos and Zeolites: from A to Z via a Common Ion. Chemical Research in Toxicology. 2021;34(4):936–951. DOI: 10.1021/acs.chemrestox.0c00286.

187. Waris G., Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. Journal of Carcinogenesis. 2006;5(1):14. DOI: 10.1186/1477-3163-5-14.

188. Pacella A., Cremisini C., Nardi E., Montereali M. R., Pettiti I., Giordani M., Ballirano P. Different erionite species bind iron into the structure: A potential explanation for fibrous erionite toxicity. Minerals. 2018;8(2):36.

189. Gualtieri A. F., Gandolfi N. B., Passaglia E., Pollastri S., Mattioli M., Giordani M., Gualtieri M. L. Is fibrous ferrierite a potential health hazard? Characterization and comparison with fibrous erionite. American Mineralogist: Journal of Earth and Planetary Materials. 2018;103(7):1044-1055.

190. Ahali Abadeh Z., Saviano G., Ballirano P., Santonicola M. G. Curcumin-loaded zeolite as anticancer drug carrier: Effect of curcumin adsorption on zeolite structure. Pure and Applied Chemistry. 2020;92(3):461–471. DOI: 10.1515/pac-2018-1213.

191. Derakhshankhah H., Jafari S., Sarvari S., Barzegari E., Moakedi F., Ghorbani M., Varnamkhasti B. S., Jaymand M., Izadi Z., Tayebi L. Biomedical Applications of Zeolitic Nanoparticles, with an Emphasis on Medical Interventions. International Journal of Nanomedicine. 2020;15:363–386. DOI: 10.2147/IJN.S234573.

192. Lehman S. E., Larsen S. C. Zeolite and mesoporous silica nanomaterials: greener syntheses, environmental applications and biological toxicity. Environmental Science: Nano. 2014;1(3):200–213.

193. Katic M., Bosnjak B., Gall-Troselj K., Dikic I., Pavelic K. A clinoptilolite effect on cell media and the consequent effects on tumor cells in vitro. Frontiers in Bioscience. 2006;11(2):1722–1732. DOI: 10.2741/1918.

194. Zakeri N., Rezaie H. R., Javadpour J., Kharaziha M. Effect of pH on cisplatin encapsulated zeolite nanoparticles: Release mechanism and cytotoxicity. Materials Chemistry and Physics. 2021;273:124964.

195. Mintova S., Burtea C., Hébert C. Corona protein composition and cytotoxicity evaluation of ultra-small zeolites synthesized from template free precursor suspensions. Toxicology Research. 2013;2(4):270–279.

196. Abd-Elsatar A. G., Farag M. M., Youssef H. F., Salih S. A., Mounier M. M., El-Meliegy E. Different zeolite systems for colon cancer therapy: monitoring of ion release, cytotoxicity and drug release behavior. Progress in Biomaterials. 2019;8(2):101–113. DOI: 10.1007/s40204-019-0115-8.

197. Паничев А. М., Кулаков Ю. В., Гульков А. Н. Применение цеолитов в медицине. Тихоокеанский медицинский журнал. 2003;(4):21–24.

198. Гайдаш А. А., Апчел В. Я., Ивченко Е. В., Белый В. И., Бакакин В. В. Влияние цеолитовых туфов на организм при пероральном поступлении. Вестник российской военно-медицинской академии. 2016;1(53):115–123.

199. Цеолиты. Эволюция знаний. Экспериментальные и клинические исследования БАД серии «Литовит». Том 2. Новосибирск: «ЭКОР-книга»; ЗАО НПФ «НОВЬ»; 2011. 175 с.

200. Kraljević Pavelić S., Saftić Martinović L., Simović Medica J., Žuvić M., Perdija Ž., Krpan D., Eisenwagen S., Orct T., Pavelić K. Clinical Evaluation of a Defined Zeolite-Clinoptilolite Supplementation Effect on the Selected Blood Parameters of Patients. Frontiers in Medicine. 2022;9:851782. DOI: 10.3389/fmed.2022.851782.


Дополнительные файлы

1. Графический абстракт
Тема
Тип Прочее
Метаданные ▾

Рецензия

Для цитирования:


Бахрушина Е.О., Белявский Н.О., Кузина В.Н., Ходенок А.И., Демина Н.Б., Раменская Г.В. Цеолиты и цеолитоподобные имидазольные каркасы в фармации (обзор). Разработка и регистрация лекарственных средств. 2025;14(1):193-221. https://doi.org/10.33380/2305-2066-2025-14-1-1920

For citation:


Bakhrushina E.O., Belyavsky N.O., Kuzina V.N., Khodenok A.I., Demina N.B., Ramenskaya G.V. Zeolites and zeolite imidazole frameworks in pharmacy (review). Drug development & registration. 2025;14(1):193-221. (In Russ.) https://doi.org/10.33380/2305-2066-2025-14-1-1920

Просмотров: 4443


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)