Preview

Drug development & registration

Advanced search

Chitosan as a basis of stimuli-sensitive systems: a systematic review (review)

https://doi.org/10.33380/2305-2066-2025-14-2-1787

Abstract

Introduction. The actual trend of modern drug development is the creation of stimuli-sensitive systems capable of solution-gel phase transition in the human body under the influence of various physiological factors (ionic composition of the medium, temperature, pH, etc.). One of the most promising stimuli-responsive natural polymers is a deacetylated derivative of the main structural component of crustacean shells, chitin – chitosan. This polymer has proven high compatibility with animal tissues, biodegradability and its own antimicrobial action, which allows its non-limited use in pharmaceutical compositions. It is also worth noting the high prevalence of chitosan in nature, which makes it an easily obtainable raw material for the creation of new dosage forms and, in particular, for import substitution of foreign polymers in Russian pharmaceutical technology.

Text. The aim of the survey presented here is to systematise information and studies on chitosan, its production, physical and chemical properties and factors on which the above depend, and, most importantly, pharmaceutical compositions based on the studied polymer and its modifications and stimuli, due to which the phase transition occurs in delivery systems involving this deacetylated natural polysaccharide. Chitosan, an amino polysaccharide composed of β-(1 → 4)-linked D-glucosamine and N-acetyl-D-glucosamine residues, has been known in the pharmaceutical industry since the middle of the XX century. Over the years of research, its biocompatibility, mucoadhesiveness and gel-forming abilities in aqueous solutions at pH in the range up to 6–7 have been proven. The most investigated chitosan-based compositions included various low molecular weight auxiliary components to achieve in situ transition of its aqueous solutions under physiological conditions, but many crosslinking components resulted either in the formation of stationary hydrogels or possessed toxic properties. One of the most promising and investigated combinations to the present day appears to be the combination of chitosan with beta-glycerophosphate.

Another interesting strategy for providing chitosan with stimulus-sensitive properties is to modify the free amino groups of the polymer chain with other high molecular weight compounds by crosslinking them through imine or amide bonds (as in methoxypolyethylene glycol-chitosan, for example), which are able to hydrolyse in the body's environment. In such way, it is possible to increase the solubility of chitosan and to achieve pH- and/or thermosensitivity in the polymers studied.

Conclusion. In the write-up of this review, the most important aspects of chitosan production and modification have been highlighted, and ways to impart pH- or thermosensitive properties to chitosan through different strategies have been demonstrated and their advantages and disadvantages have been shown. Significantly, no work was found to prove the presence of stimulus-sensitive properties in individual chitosan solutions.

About the Authors

V. S. Pyzhov
I. M. Sechenov First MSMU of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

8/2, Trubetskaya str., Mosсow, 119991



V. S. Ganykin
I. M. Sechenov First MSMU of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

8/2, Trubetskaya str., Mosсow, 119991



D. M. Vlasova
I. M. Sechenov First MSMU of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

8/2, Trubetskaya str., Mosсow, 119991



Ya. D. Petukhova
I. M. Sechenov First MSMU of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

8/2, Trubetskaya str., Mosсow, 119991



A. I. Khodenok
I. M. Sechenov First MSMU of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

8/2, Trubetskaya str., Mosсow, 119991



E. O. Bakhrushina
I. M. Sechenov First MSMU of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

8/2, Trubetskaya str., Mosсow, 119991



References

1. Panov D. A. Effect of chitosan on the physicochemical properties of sodium alginate. Uchenye zapiski Krymskogo federal’nogo universiteta imeni V. I. Vernadskogo Biologiya. Khimiya. 2018;4(70):311–319. (In Russ.)

2. Porfiryeva N. N., Semina I. I., Moustafine R. I., Khutoryanskiy V. V. Intranasal Administration as a Route to Deliver Drugs to the Brain (Review). Drug development & registration. 2021;10(4):117–127. (In Russ.) DOI: 10.33380/2305-2066-2021-10-4-117-127.

3. Bakhrushina E. O., Demina N. B., Shumkova M. M., Rodyuk P. S., Shulikina D. S., Krasnyuk I. I. In situ Intranasal Delivery Systems: Application Prospects and Main Pharmaceutical Aspects of Development (Review). Drug development & registration. 2021;10(4):54–63. DOI: 10.33380/2305-2066-2021-10-4-54-63.

4. Egorov A. R., Khrustalev V. N., Khubiev O. M., Belyy A. E., Golubev R. A., Esakova V.E. New functionalized chitosan derivatives for prolonged release of ciprofloxacin. Information and education boundaries of communication. 2023;15(23):258–261. (In Russ.)

5. Abourehab M. A. S., Pramanik S., Abdelgawad M. A., Abualsoud B. M., Kadi A., Ansari M. J., Deepak A. Recent Advances of Chitosan Formulations in Biomedical Applications. International Journal of Molecular Sciences. 2022;23(18):10975. DOI: 10.3390/ijms231810975.

6. James H. P., John R., Alex A., Anoop K. R. Smart polymers for the controlled delivery of drugs – a concise overview. Acta Pharmaceutica Sinica B. 2014;4(2):120–127. DOI: 10.1016/j.apsb.2014.02.005.

7. Wells C. M., Harris M., Choi L., Murali V. P., Delbuque Guerra F., Jennings J. A. Stimuli-Responsive Drug Release from Smart Polymers. Journal of Functional Biomaterials. 2019;10(3):34. DOI: 10.3390/jfb10030034.

8. Demina N. B., Bakhrushina E. O., Bardakov A. I., Krasnyuk I. I. Design of intranasal dosage forms: biopharmaceutical aspects. Pharmacy. 2019;68(3):12–17. (In Russ.) DOI: 10.29296/25419218-2019-03-02.

9. Lu B., Xiong S.-B., Yang H., Yin X.-D., Zhao R.-B. Mitoxantrone-loaded BSA nanospheres and chitosan nanospheres for local injection against breast cancer and its lymph node metastases. II: Tissue distribution and pharmacodynamics. International Journal of Pharmaceutics. 2006;307(2):175–181. DOI: 10.1016/j.ijpharm.2005.09.038.

10. Budiarso I. J., Rini N. D. W., Tsalsabila A., Birowosuto M. D., Wibowo A. Chitosan-Based Smart Biomaterials for Biomedical Applications: Progress and Perspectives. ACS Biomaterials Science & Engineering. 2023;9(6):3084–3115. DOI: 10.1021/acsbiomaterials.3c00216.

11. Luckanagul J.A., Pitakchatwong C., Ratnatilaka Na Bhuket P., Muangnoi C., Rojsitthisak P., Chirachanchai S., Wang Q., Rojsitthisak P. Chitosan-based polymer hybrids for thermo-responsive nanogel delivery of curcumin. Carbohydrate Polymers. 2018;181:1119–1127. DOI: 10.1016/j.carbpol.2017.11.027.

12. Prabaharan M., Mano J. F. Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromolecular Bioscience. 2006;6(12):991–1008. DOI: 10.1002/mabi.200600164.

13. Xing L., Fan Y.-T., Shen L.-J., Yang C.-X., Liu X.-Y., Ma Y.-N., Qi L.-Y., Cho K.-H., Cho C.-S., Jiang H.-L. pH-sensitive and specific ligand-conjugated chitosan nanogels for efficient drug delivery. International Journal of Biological Macromolecules. 2019;141:85–97. DOI: 10.1016/j.ijbiomac.2019.08.237.

14. Mochalova A. E., Budruev A. V., Oleynik A. V., Smirnova L. A. Thermo- and pH-sensitive chitosan-based hydrogels prepared using terephthalic acid diazide. Perspektivnye materialy. 2014;5:61–65. (In Russ.)

15. Strokova N. G., Podkorytova A. V. Modern ways for processing of chitin-containing raw materials. Trudy VNIRO. 2018;170:124–152. (In Russ.)

16. Prokopchuk N. R., Shashok Zh. S., Vishnevskiy K. V., Prishchepenko D. V., Shkodich V. F. Preparation of nanofibres from chitosan biopolymer. Herald of technological university. 2015;18(7):115–118. (In Russ.)

17. Kou S. G., Peters L. M., Mucalo M. R. Chitosan: A review of sources and preparation methods. International Journal of Biological Macromolecules. 2021;169:85–94. DOI: 10.1016/j.ijbiomac.2020.12.005.

18. Soon C. Y., Tee Y. B., Tan C. H., Rosnita A. T., Khalina A. Extraction and physicochemical characterization of chitin and chitosan from Zophobas morio larvae in varying sodium hydroxide concentration. International Journal of Biological Macromolecules. 2018;108:135–42. DOI: 10.1016/j.ijbiomac.2017.11.138.

19. Teli M. D., Sheikh J. Extraction of chitosan from shrimp shells waste and application in antibacterial finishing of bamboo rayon. International Journal of Biological Macromolecules. 2012;50(5):1195–1200. DOI: 10.1016/j.ijbiomac.2012.04.003.

20. Younes I., Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs. 2015;13(3):1133–1174. DOI: 10.3390/md13031133.

21. El Knidri H., Belaabed R., Addaou A., Laajeb A., Lahsini A. Extraction, chemical modification and characterization of chitin and chitosan. International Journal of Biological Macromolecules. 2018;120(Part A):1181–1189. DOI: 10.1016/j.ijbiomac.2018.08.139.

22. Jo G.-H., Park R.-D., Jung W.-J., Enzymatic production chitin from crustacean shell waste. In: Kim S.-K., editor. Chitin, Chitosan, Oligosaccharides and Their Derivatives. Boca Raton: CRC Press; 2010. P. 37–45. DOI: 10.1201/EBK1439816035-c4.

23. Doan C. T., Tran T. N., Nguyen V. B., Vo T. P. K., Nguyen A. D., Wang S.-L. Chitin extraction from shrimp waste by liquid fermentation using an alkaline protease-producing strain, Brevibacillus parabrevis. International Journal of Biological Macromolecules. 2019;131:706–715. DOI: 10.1016/j.ijbiomac.2019.03.117.

24. Arbia W., Arbia L., Adour L., Amrane A. Chitin Extraction from Crustacean Shells Using Biological Methods – A Review. Chitin Recovery Using Biological Methods, Food Technol. Biotechnol. 2013;51(1):12–25.

25. Kim S.-K., editor. Chitin, Chitosan, Oligosaccharides and Their Derivatives. Boca Raton: CRC press; 2010. 666 p. DOI: 10.1201/EBK1439816035.

26. Svirshchevskaya E. V., Zubareva A. A., Boyko A. A., Shustova O. A., Grechikhina M. V., Shagdarova B. Ts., Varlamov V. P. Toxicity and biocompatibility analysis of chitosan derivatives with different physicochemical properties. Prikladnaya biokhimiya i mikrobiologiya. 2016;52(5):467–475. (In Russ.) DOI: 10.7868/S0555109916050159.

27. Novikov V. Yu., Derkach S. R., Konovalova I. N., Kuchina Yu. A., Dolgopyatova N. V. Chitosan from crustacean shells of northern seas: Preparation and physicochemical properties. In: Proceedings of the IV All-Russian Conference. September 23–28, 2018. Kirov; 2018. P. 136–137. (In Russ.)

28. Nilsen-Nygaard J., Strand S. P., Vårum K. M., Draget K. I., Nordgård C. T. Chitosan: Gels and interfacial properties. Polymers. 2015;7(3):552–579. DOI: 10.3390/polym7030552.

29. Kean T., Thanou M. Chitin and Chitosan: Sources, Production and Medical Applications. In: Williams P., editor. Renewable Resources for Functional Polymers and Biomaterials. Cambridge: The Royal Society of Chemistry; 2011. P. 292–318. DOI: 10.1039/9781849733519-00292.

30. Khan T. A., Peh K. K., Ch'ng H. S. Reporting degree of deacetylation values of chitosan: the influence of analytical methods. Journal of Pharmacy & Pharmaceutical Sciences. 2002;5(3):205–212.

31. Hussain R., Iman M., Maji T. K. Determination of degree of deacetylation of chitosan and their effect on the release behavior of essential oil from chitosan and chitosan-gelatin complex microcapsules. International Journal of Advanced Engineering Application. 2013;2(4):4–12.

32. Gerasimenko D. V., Avdienko I. D., Bannikova G. E., Zueva O. Yu., Varlamov V. P. Antibacterial Effects of Water-Soluble Low-Molecular-Weight Chitosans on Different Microorganisms. Applied Biochemistry and Microbiology. 2004;40(3):253–257. DOI: 10.1023/B:ABIM.0000025947.84650.b4.

33. Qin C., Du Y., Xiao L., Li Z., Gao X. Enzymic preparation of water-soluble chitosan and their antitumor activity. International Journal of Biological Macromolecules. 2002;31(1–3):111–117. DOI: 10.1016/S0141-8130(02)00064-8.

34. Ilyina A. V., Tikhonov V. E., Albulov A. I., Varlamov V. P. Enzymic preparation of acid-free-water-soluble chitosan. Process Biochemistry. 2000;35(6):563–568. DOI: 10.1016/S0032-9592(99)00104-1.

35. Allan C. R., Hadwiger L. A. The fungicidal effect of chitosan on fungi of varying cell wall composition. Experimental Mycology. 1979;3(3):285–287. DOI: 10.1016/S0147-5975(79)80054-7.

36. Li Q., Dunn E. T., Grandmaison E. W., Goosen M. F. A. Applications and Properties of Chitosan. Journal of Bioactive and Compatible Polymers. 1992;7(4):370–397. DOI: 10.1177/088391159200700406.

37. Casey L. S., Wilson L. D. Investigation of Chitosan-PVA Composite Films and Their Adsorption Properties. Journal of Geoscience and Environment Protection. 2015;03(02):78–84. DOI: 10.4236/gep.2015.32013.

38. Mitani T., Moriyama A., Ishii H. Heavy Metal Uptake by Swollen Chitosan Beads. Bioscience, Biotechnology, and Biochemistry. 1992;56(6):985. DOI: 10.1271/bbb.56.985.

39. Kurita K., Sannan T., Iwakura Y. Studies on chitin. VI. Binding of metal cations. Journal of Applied Polymer Science. 1979;23(2):511–515. DOI: 10.1002/app.1979.070230221.

40. Kholyavka M. G., Olshannikova S. S., Artyukhov V. G. Method for the preparation of papain in a gel based on dietary chitosan and chitosan succinate. Patent RUS № 2712690 C1. 07.03.2019. (In Russ.)

41. Mikhaylenko M. A., Shakhtshneyder T. P., Antonov I. M., Kuznetsova S. A., Bryazgin A. A. Method for preparation of chitosan-acrylamide copolymers as a pH-sensitive delivery vehicle for biologically active substances. Patent RUS № 2786240 C1. 21.12.2021. (In Russ.)

42. Shagdarova B. Ts., Lopatin S. A., Konovalova M. V., Ilina A. V., Albulov A. I., Varlamov V. P. Method for producing low molecular weight chitosan and chitosan oligomers. Patent RUS № 2627870 C1. 12.08.2016. (In Russ.)

43. Wang W., Meng Q., Li Q., Liu J., Zhou M., Jin Z., Zhao K. Chitosan Derivatives and Their Application in Biomedicine. International Journal of Molecular Sciences. 2020;21(2):487. DOI: 10.3390/ijms21020487.

44. Croisier F., Jérôme C. Chitosan-based biomaterials for tissue engineering. European Polymer Journal. 2013;49(4):780–792. DOI: 10.1016/j.eurpolymj.2012.12.009.

45. Irimia T., Dinu-Pîrvu C.-E., Ghica M. V., Lupuleasa D., Muntean D.-L., Udeanu D. I., Popa L. Chitosan-Based In Situ Gels for Ocular Delivery of Therapeutics: A State-of-the-Art Review. Marine Drugs. 2018;16(10):373. DOI: 10.3390/md16100373.

46. Chatterjee S., Chi-Leung Hui P. Review of Stimuli-Responsive Polymers in Drug Delivery and Textile Application. Molecules. 2019;24(14):2547. DOI: 10.3390/molecules24142547.

47. Ullah F., Othman M. B. H., Javed F., Ahmad Z., Akil H. Classification, processing and application of hydrogels: A review. Materials Science and Engineering: C. 2015;57:414–433. DOI: 10.1016/j.msec.2015.07.053.

48. Rizwan M., Yahya R., Hassan A., Yar M., Azzahari A., Selvanathan V., Sonsudin F., Abouloula C. pH Sensitive Hydrogels in Drug Delivery: Brief History, Properties, Swelling, and Release Mechanism, Material Selection and Applications. Polymers. 2017;9(4):137. DOI: 10.3390/polym9040137.

49. Affes S., Aranaz I., Acosta N., Heras Á., Nasri M., Maalej H. Chitosan derivatives-based films as pH-sensitive drug delivery systems with enhanced antioxidant and antibacterial properties. International Journal of Biological Macromolecules. 2021;182:730–742. DOI: 10.1016/j.ijbiomac.2021.04.014.

50. Du H., Liu M., Yang X., Zhai G. The design of pH-sensitive chitosan-based formulations for gastrointestinal delivery. Drug Discovery Today. 2015;20(8):1004–1011. DOI: 10.1016/j.drudis.2015.03.002.

51. Wei J., Xue W., Yu X., Qiu X., Liu Z. pH Sensitive phosphorylated chitosan hydrogel as vaccine delivery system for intramuscular immunization. Journal of Biomaterials Applications. 2017;31(10):1358–1369. DOI: 10.1177/0885328217704139.

52. Tsao C. T., Hsiao M. H., Zhang M. Y., Levengood S. L., Zhang M. Chitosan-PEG hydrogel with sol-gel transition triggerable by multiple external stimuli. Macromolecular Rapid Communications. 2015;36(3):332–338. DOI: 10.1002/marc.201400586.

53. Fu C., Wang S., Feng L., Liu X., Ji Y., Tao L., Li S., Wei Y. Hierarchically porous chitosan-PEG-silica biohybrid: synthesis and rapid cell adsorption. Advanced Healthcare Materials. 2013;2(2):302–305. DOI: 10.1002/adhm.201200166.

54. Hsu L.-W., Lee P.-L., Chen C.-T., Mi F.-L., Juang J.-H., Hwang S.-M., Ho Y.-C., Sung H.-W. Elucidating the signaling mechanism of an epithelial tight-junction opening induced by chitosan. Biomaterials. 2012;33(26):6254–6263. DOI: 10.1016/j.biomaterials.2012.05.013.

55. Lee S. Y., Lee Y., Kim J. E., Park T. G., Ahn C.-H. A novel pH-sensitive PEG-PPG-PEG copolymer displaying a closed-loop sol–gel–sol transition. Journal of Materials Chemistry. 2009;19(43):8198–8201. DOI: 10.1039/b912540j.

56. Bigucci F., Luppi B., Musenga A., Zecchi V., Cerchiara T. Chitosan Salts Coated with Stearic Acid as Colon-Specific Delivery Systems for Vancomycin. Drug Delivery. 2008;15(5):289–293. DOI: 10.1080/10717540802006468.

57. Jalalvandi E., Shavandi A. In situ-forming and pH-responsive hydrogel based on chitosan for vaginal delivery of therapeutic agents. Journal of Materials Science: Materials in Medicine. 2018;29(10):158. DOI: 10.1007/s10856-018-6166-x.

58. Omidi S., Pirhayati M., Kakanejadifard A. Co-delivery of doxorubicin and curcumin by a pH-sensitive, injectable, and in situ hydrogel composed of chitosan, graphene, and cellulose nanowhisker. Carbohydrate Polymers. 2020;231:115745. DOI: 10.1016/j.carbpol.2019.115745.

59. Tan H., Rubin J. P., Marra K. G. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for adipose tissue regeneration. Organogenesis. 2010;6(3):173–180. DOI: 10.4161/org.6.3.12037.

60. Gupta S., Vyas S. P. Carbopol/chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate. Scientia Pharmaceutica. 2010;78(4):959–976. DOI: 10.3797/scipharm.1001-06.

61. Gupta H., Jain S., Mathur R., Mishra P., Mishra A. K., Velpandian T. Sustained ocular drug delivery from a temperature and pH triggered novel in situ gel system. Drug Delivery. 2007;14(8):507–515. DOI: 10.1080/10717540701606426.

62. Zarrintaj P., Jouyandeh M., Ganjali M. R., Hadavand B. S., Mozafari M., Sheiko S. S., Vatankhah-Varnoosfaderani M., Gutiérrez T. J., Saeb M. R. Thermo-sensitive polymers in medicine: A review. European Polymer Journal. 2019;117:402–423. DOI: 10.1016/j.eurpolymj.2019.05.024.

63. Zhou H. Y., Jiang L. J., Cao P. P., Li J. B., Chen X. G. Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications. Carbohydrate Polymers. 2015;117:524–536. DOI: 10.1016/j.carbpol.2014.09.094.

64. Qi X., Qin X., Yang R., Qin J., Li W., Luan K., Wu Z., Song L. Intra-articular Administration of Chitosan Thermosensitive In Situ Hydrogels Combined With Diclofenac Sodium-Loaded Alginate Microspheres. Journal of Pharmaceutical Sciences. 2016;105(1):122–130. DOI: 10.1016/j.xphs.2015.11.019.

65. Gholizadeh H., Messerotti E., Pozzoli M., Cheng S., Traini D., Young P., Kourmatzis A., Caramella C., Ong H. X. Application of a Thermosensitive In Situ Gel of Chitosan-Based Nasal Spray Loaded with Tranexamic Acid for Localised Treatment of Nasal Wounds. AAPS PharmSciTech. 2019;20(7):299. DOI: 10.1208/s12249-019-1517-6.

66. Gholizadeh H., Cheng S., Pozzoli M., Messerotti E., Traini D., Young P., Kourmatzis A., Ong H. X. Smart thermosensitive chitosan hydrogel for nasal delivery of ibuprofen to treat neurological disorders. Expert Opinion on Drug Delivery. 2019;16(4):453–466. DOI: 10.1080/17425247.2019.1597051.

67. Naik A., Nair H. Formulation and evaluation of thermosensitive biogels for nose to brain delivery of doxepin. BioMed Research International. 2014;2014:847547. DOI: 10.1155/2014/847547.

68. Liu L., Gao Q., Lu X., Zhou H. In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration. Asian Journal of Pharmaceutical Sciences. 2016;11(6):673–683. DOI: 10.1016/j.ajps.2016.07.001.

69. Navard P. The European Polysaccharide Network of Excellence (EPNOE). Carbohydrate Polymers. 2013;93(1):2. DOI: 10.1016/j.carbpol.2012.12.021.

70. Sarkar D., Martinez J. Use of Atomized Intranasal Tranexamic Acid as an Adjunctive Therapy in Difficult-to-Treat Epistaxis. Journal of Special Operations Medicine. 2019;19(2):23–28. DOI: 10.55460/CV5L-GVGA.

71. Chenite A. Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydrate Polymers. 2001;46(1):39–47. DOI: 10.1016/S0144-8617(00)00281-2.

72. Foxman E. F., Storer J. A., Fitzgerald M. E., Wasik B. R., Hou L., Zhao H., Turner P. E., Pyle A. M., Iwasaki A. Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells. Proceedings of the National Academy of Sciences. 2015;112(3):827–832. DOI: 10.1073/pnas.1411030112.

73. Kim S., Nishimoto S. K., Bumgardner J. D., Haggard W. O., Gaber M. W., Yang Y. A chitosan/β-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer. Biomaterials. 2010;31(14):4157–4166. DOI: 10.1016/j.biomaterials.2010.01.139.

74. Pieklarz K., Jenczyk J., Modrzejewska Z., Owczarz P., Jurga S. An Investigation of the Sol-Gel Transition of Chitosan Lactate and Chitosan Chloride Solutions via Rheological and NMR Studies. Gels. 2022;8(10):670. DOI: 10.3390/gels8100670.

75. Jiang G., Sun J., Ding F. PEG-g-chitosan thermosensitive hydrogel for implant drug delivery: Cytotoxicity, in vivo degradation and drug release. Journal of Biomaterials Science, Polymer Edition. 2014;25(3):241–256. DOI: 10.1080/09205063.2013.851542.


Supplementary files

1. Графический абстракт
Subject
Type Other
View (1020KB)    
Indexing metadata ▾

Review

For citations:


Pyzhov V.S., Ganykin V.S., Vlasova D.M., Petukhova Ya.D., Khodenok A.I., Bakhrushina E.O. Chitosan as a basis of stimuli-sensitive systems: a systematic review (review). Drug development & registration. 2025;14(2):88-105. (In Russ.) https://doi.org/10.33380/2305-2066-2025-14-2-1787

Views: 1978


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)