Influence of ultrasound extraction of Fucus vesiculosus on the kinetics of fucoidan degradation and its properties
https://doi.org/10.33380/2305-2066-2025-14-2-1869
Abstract
Introduction. A promising source for isolating fucoidan is Fucus vesiculosus L., a widespread species of brown algae. In recent years, the possibility of using fucoidan in medicine and pharmacy has been widely studied. The method of extracting polysaccharides significantly affects their characteristics and properties. To improve extraction efficiency, the possibility of using ultrasonic-assisted extraction (UAE) has recently been widely explored.
Aim. Study of the influence of the time of low-frequency UAE of brown algae F. vesiculosus on the kinetics of fucoidan degradation and its properties.
Materials and methods. Fresh frozen brown algae F. vesiculosus L. were used as raw material. UAE was carried out at an oscillation frequency of 22 kHz and a temperature of 25 °C. The extract was obtained at a temperature of 60 °C using the dynamic maceration method. The homogeneity and molecular weight of fucoidan were analyzed by high-performance size exclusion chromatography (HPSEC). FT-IR spectra of fucoidan were obtained on a VERTEX 70 spectrometer. Quantitative determination of fucose and sulfates was performed using a spectrophotometric method. The antioxidant activity (AOA) of fucoidan was assessed using FRAP test. Mathematical and statistical processing of the results was carried out in accordance with Russian Federation Pharmacopeia XV edition using MO Excel 2007 software.
Results and discussion. The calculated rate of fucoidan degradation was 19.5 %/h. The reaction rate constant and half-life calculated using the second-order model (R2 > 0.97) were 5.8 · 10–6 mol/(g · min) and 110 min. Ultrasonic degradation of fucoidan occurred predominantly due to random scission model (R2 > 0,98). Using FTIR spectrometry, it was found that the preliminary structures of fucoidan without ultrasound and after ultrasound extraction were not changed. Analysis of antioxidant activity showed that fucoidan after ultrasonic extraction, despite a decrease in molecular weight, demonstrated significant antioxidant activity in vitro.
Conclusion. For the first time, a change in the conformational and antioxidant properties of fucoidan caused by low-frequency UAE was shown. UAE of fucoidan leads to a decrease in average molecular weight and degradation of fucoidan without significant destruction of sulfate groups. Overall, this study shows that the low frequency ultrasonic extraction, which is a gentle, environmentally friendly method that can be completed in a short period, can be effectively used to extract fucoidan without critically changing the molecular weight and antioxidant activity.
About the Authors
E. D. ObluchinskayaRussian Federation
17, Vladimirskaya str., Murmansk, 183038
O. N. Pozharitskaya
Russian Federation
17, Vladimirskaya str., Murmansk, 183038
References
1. Usov A. I., Bilan M. I. Fucoidans – sulfated polysaccharides of brown algae. Russian Chemical Reviews. 2009;78(8):785–799. (In Russ.) DOI: 10.1070/RC2009v078n08ABEH004063.
2. Lomartire S., Gonçalves A. M. M. Algal phycocolloids: bioactivities and pharmaceutical applications. Marine Drugs. 2023;21(7):384. DOI: 10.3390/md21070384.
3. George A., Shrivastav P. S. Fucoidan, a brown seaweed polysaccharide in nanodrug delivery. Drug Delivery and Translational Research. 2023;13:2427–2446. DOI: 10.1007/s13346-023-01329-4.
4. Suprunchuk V. E., Denisova E. V. Fucoidan as a component in the development of target systems for the delivery of medicinal substances. Molecular medicine. 2019;17(5):23–29. (In Russ.) DOI 10.29296/24999490-2019-05-03.
5. Flórez-Fernández N., Balboa E. M., Domínguez H. Extraction and purification of fucoidan from marine sources. Encyclopedia of Marine Biotechnology. 2020;2:1093–1125. DOI: 10.1002/9781119143802.ch44.
6. Zayed A., Ulber R. Fucoidans: Downstream processes and recent applications. Marine Drugs. 2020;18:170. DOI: 10.3390/md18030170.
7. Gomez L. P., Alvarez C., Zhao M., Tiwari U., Curtin J., Garcia-Vaquero M., Tiwari B. K. Innovative processing strategies and technologies to obtain hydrocolloids from macroalgae for food applications. Carbohydrate Polymers. 2020;248:116784. DOI: 10.1016/j.carbpol.2020.116784.
8. Obluchinskaya E. D., Minina S. A. Improvement of the method for obtaining extract from fucus algae meal. Pharmaceutical Chemistry Journal. 2004;38(6)36–39. (In Russ.) DOI: 10.30906/0023-1134-2004-38-6-36-39.
9. Hmelkov A. B., Zvyagintseva T. N., Shevchenko N. M., Rasin A. B., Ermakova S. P. Ultrasound-assisted extraction of polysaccharides from brown alga Fucus evanescens. Structure and biological activity of the new fucoidan fractions. Journal of Applied Phycology. 2018;30:2039–2046. DOI: 10.1007/s10811-017-1342-9.
10. Jayawardena T. U., Nagahawatta D. P., Fernando I. P. S., Kim Y.-T., Kim J.-S., Kim W.-S., Lee J. S., Jeon Y.-J. A Review on fucoidan structure, extraction techniques, and its role as an immunomodulatory agent. Marine Drugs. 2022;20(12):755. DOI: 10.3390/md20120755.
11. Guo X., Ye X., Sun Y., Wu D., Wu N., Hu Y., Chen S. Ultrasound effects on the degradation kinetics, structure, and antioxidant activity of sea cucumber fucoidan. Journal of Agricultural and Food Chemistry. 2014;62(5):1088–1095. DOI: 10.1021/jf404717y.
12. Elapov A. A., Kuznetsov N. N., Marakhova A. I. The Use of Ultrasound in the Extraction of Biologically Active Compounds from Plant Raw Materials, Used or promising for Use in Medicine (Review). Drug development & registration. 2021;10(4):96–116. (In Russ.) DOI: 10.33380/2305-2066-2021-10-4-96-116.
13. Belokurov S. S., Flysyuk E. V., Smekhova I. E. Choice of Extraction Method for Receiving Extraction from Seeds of Payne Hay with the High Content of Biologically Active Substances. Drug development & registration. 2019;8(3):35–39. (In Russ.) DOI: 10.33380/2305-2066-2019-8-3-35-39.
14. Kaleta A., Frolova N., Orlova A., Soboleva A., Osmolovskaya N., Flisyuk E., Pozharitskaya O., Frolov A., Shikov A. The effects of selected extraction methods and natural deep eutectic solvents on the recovery of active principles from Aralia elata var. mandshurica (Rupr. & Maxim.) J. Wen: A non-targeted metabolomics approach. Pharmaceuticals. 2024;17(3):355. DOI: 10.3390/ph17030355.
15. Obluchinskaya E. D., Pozharitskaya O. N., Shikov A. N. In Vitro anti-inflammatory activities of fucoidans from five species of brown seaweeds. Marine Drugs. 2022;20(10):606. DOI: 10.3390/md20100606.
16. Ayrapetyan O. N., Obluchinskaya E. D., Zhurishkina E. V., Skorik Yu. A., Lebedev D. V., Kulminskaya A. A., Lapina I. M. Antibacterial properties of fucoidans from the brown algae Fucus vesiculosus L. of the Barents sea. Biology. 2021;10(1):67. DOI: 10.3390/biology10010067.
17. Jo B. W., Choi S.-K. Degradation of fucoidans from Sargassum fulvellum and their biological activities. Carbohydrate Polymers. 2014;111:822–829. DOI: 10.1016/j.carbpol.2014.05.049.
18. Gavrilova A. S., Manaenkov O. V., Filatova A. E. Research of microcrystalline cellulose ultrasonic treatment. Vestnik of Tver State Technical University. 2015;27(1):60–66. (In Russ.)
19. Zayed A., El-Aasr M., Ibrahim A.-R. S., Ulber R. Fucoidan characterization: Determination of purity and physicochemical and chemical properties. Marine Drugs. 2020;18(11):571. DOI: 10.3390/md18110571.
20. Yan J.-K., Wang Y.-Y., Ma H.-L., Wang Z.-B. Ultrasonic effects on the degradation kinetics, preliminary characterization and antioxidant activities of polysaccharides from Phellinus linteus mycelia. Ultrasonics Sonochemistry. 2016;29:251–257. DOI: 10.1016/j.ultsonch.2015.10.005.
21. Wu T., Zivanovic S., Hayes D. G., Weiss J. Efficient reduction of chitosan molecular weight by high-intensity ultrasound: underlying mechanism and effect of process parameters. Journal of Agricultural and Food Chemistry. 2008;56(13):5112–5119. DOI: 10.1021/jf073136q.
22. Pu Y., Zou Q., Hou D., Zhang Y., Chen S. Molecular weight kinetics and chain scission models for dextran polymers during ultrasonic degradation. Carbohydrate Polymers. 2017;156:71–76. DOI: 10.1016/j.carbpol.2016.09.017.
23. Yin J.-Y., Ma L.-Y., Siu K.-C., Wu J.-Y. Effects of ultrasonication on the conformational, microstructural, and antioxidant properties of konjac glucomannan. Applied Sciences. 2019;9(3):461. DOI: 10.3390/app9030461.
24. Zhang L., Ye X., Ding T., Sun X., Xu Y., Liu D. Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin. Ultrasonics Sonochemistry. 2013;20(1):222–231. DOI: 10.1016/j.ultsonch.2012.07.021.
25. Czechowska-Biskup R., Rokita B., Lotfy S., Ulanski P., Rosiak J. M. Degradation of chitosan and starch by 360-kHz ultrasound. Carbohydrate Polymers. 2005;60(2):175−184. DOI: 10.1016/j.carbpol.2004.12.001.
26. Flórez-Fernández N., López-García M., González-Muñoz M. J., López Vilariño J. M., Domínguez H. Ultrasound-assisted extraction of fucoidan from Sargassum muticum. Journal of Applied Phycology. 2017;29:1553–1561. DOI: 10.1007/s10811-016-1043-9.
27. Wang P., Cheng C., Ma Y., Jia M. Degradation behavior of polyphenols in model aqueous extraction system based on mechanical and sonochemical effects induced by ultrasound. Separation and Purification Technology. 2020;247:116967. DOI: 10.1016/j.seppur.2020.116967.
Supplementary files
|
1. Графический абстракт | |
Subject | ||
Type | Other | |
View
(1MB)
|
Indexing metadata ▾ |
Review
For citations:
Obluchinskaya E.D., Pozharitskaya O.N. Influence of ultrasound extraction of Fucus vesiculosus on the kinetics of fucoidan degradation and its properties. Drug development & registration. 2025;14(2):112-121. (In Russ.) https://doi.org/10.33380/2305-2066-2025-14-2-1869