Advances in the use of nanomicelles to enhance the efficacy of antitumour substances (review)
https://doi.org/10.33380/2305-2066-2025-14-2-2007
Abstract
Introduction. The influence of the dosage form on the pharmacological effect has been known since ancient times. The strategy for the preparation of micellar dosage forms for active antitumour substances was formulated in the last century. However, it has become widespread in practice in recent decades. This is largely due to advances in the synthesis of new structural components for the formation of micellar carrier, as well as to the acquisition of better knowledge of biochemical processes occurring in the tumour cell.
Text. This review is devoted to the achievements in the field of application of nanomicellar forms of antitumor drugs to improve the effectiveness of cancer therapy, which cover the period from 2019 to 2024. For this purpose, excipients used to obtain nanomicellar forms of antitumor substances are considered and analyzed, using docetaxel, paclitaxel, doxorubicin, and photosensitizers as examples. The creation of micellar forms allowed us to take a new look at these substances known in oncological practice.
Conclusion. Available achievements in the field of nanomicelles application for increasing the effectiveness of antitumour substances undoubtedly show the promising development of this technological direction. However, there are still many unresolved issues related to the stability of nanomicelles when administered into the body, as well as legal regulation in the field of creation and introduction of this new pharmaceutical form. These questions still need to be resolved by pharmaceutical science.
About the Authors
E. V. SanarovaRussian Federation
23, Kashirskoe shosse, Moscow, 115522
L. L. Nikolaeva
Russian Federation
23, Kashirskoe shosse, Moscow, 115522;
8/2, Trubetskaya str., Mosсow, 119991
S. D. Shceglov
Russian Federation
23, Kashirskoe shosse, Moscow, 115522;
8/2, Trubetskaya str., Mosсow, 119991
Zh. M. Kozlova
Russian Federation
8/2, Trubetskaya str., Mosсow, 119991
O. L. Orlova
Russian Federation
23, Kashirskoe shosse, Moscow, 115522
N. A. Oborotova
Russian Federation
23, Kashirskoe shosse, Moscow, 115522
A. V. Lantsova
Russian Federation
23, Kashirskoe shosse, Moscow, 115522
References
1. Dechbumroong P., Hu R., Keaswejjareansuk W., Namdee K., Liang X.-J. Recent advanced lipid-based nanomedicines for overcoming cancer resistance. Cancer Drug Resistance. 2024;7:24. DOI: 10.20517/cdr.2024.19.
2. Mahato R. Multifunctional Micro- and Nanoparticles. In: Mitra A. K., Cholkar K., Mandal A., editors. Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices. Amsterdam: Elsevier Inc.; 2017. P. 21–43. DOI: 10.1016/b978-0-323-42978-8.00002-4.
3. Trinh H. M., Joseph M., Cholkar K., Mitra R., Mitra A. K. Nanomicelles in Diagnosis and Drug Delivery. In: Mitra A. K., Cholkar K., Mandal A., editors. Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices. Amsterdam: Elsevier Inc.; 2017. P. 45–58. DOI: 10.1016/B978-0-323-42978-8.00003-6.
4. Sanarova E. V., Lantsova A. V., Nikolaeva L. L., Dmitrieva M. V., Orlova O. L., Kosorukov V. S. Creation of liposomal delivery systems for antitumour substances. Moscow: "Pero" Publishing House; 2023. 152 р. (In Russ.)
5. Sanarova E., Lantsova A., Oborotova N., Polozkova A., Dmitrieva M., Orlova O., Nikolaeva L., Borisova L., Shprakh Z. Development of a Liposomal Dosage Form for a New Somatostatin Analogue. Indian Journal of Pharmaceutical Sciences. 2019;81(1):146–149. DOI: 10.4172/pharmaceutical-sciences.1000490.
6. Sanarova E., Lantsova A., Oborotova N., Orlova O., Polozkova A., Dmitrieva M., Nikolaeva N. Liposome drug delivery. Journal of Pharmaceutical Sciences and Research. 2019;11(3):1148–1155.
7. Khan Z., Haider M. F., Naseem N., Siddiqui M. A., Ahmad U., Khan M. M. Nanocarrier for the treatment of liver cancer. Journal of Pharmaceutical Sciences and Research. 2022;14(11):944–957.
8. Alshweiat A., Jaber M., Abuawad A., Athamneh T., Oqal M. Recent insights into nanoformulation delivery systems of flavonoids against glioblastoma. Journal of Drug Delivery Science and Technology. 2024;91:105271. DOI: 10.1016/j.jddst.2023.105271.
9. Sanarova E. V., Lantsova A. V., Nikolaeva L. L., Oborotova N. A. Using polysorbates for the creation of parenteral dosage forms of hydrophobic substances (a review). Pharmaceutical Chemistry Journal. 2022;56(7):35–39. (In Russ.) DOI 10.30906/0023-1134-2022-56-7-35-39.
10. Tang C., Zhao Y., Liu J., Zheng X., Guo X., Liu H., Chen L., Shi Y. Polysorbate 80 as a possible allergenic component in cross-allergy to docetaxel and fosaprepitant: A literature review. Journal of Oncology Pharmacy Practice. 2023;29(8):1998–2006. DOI: 10.1177/10781552231203186.
11. Sanarova E. V., Lantsova A. V., Nikolaeva L. L., Osipov V. N., Gusev D. V., Borisova L. M. Solubilization of 3-hydroxyquinazoline derivative with antitumor activity. Russian Journal of Biotherapy. 2023;22(4):60–67. (In Russ.) DOI: 10.17650/1726-9784-2023-22-4-60-67.
12. Gallego-Jara J., Lozano-Terol G., Sola-Martínez R. A., Cánovas-Díaz M., de Diego Puente T. A Compressive Review about Taxol®: History and Future Challenges. Molecules. 2020;25(24):5986. DOI: 10.3390/molecules25245986.
13. Zarrintaj P., Ramsey J. D., Samadi A., Atoufi Z., Yazdi M. K., Ganjali M. R., Amirabad L. M., Zangene E., Farokhi M., Formela K., Saeb M. R., Mozafari M., Thomas S. Poloxamer: A versatile tri-block copolymer for biomedical applications. Acta Biomaterialia. 2020;110:37–67. DOI: 10.1016/j.actbio.2020.04.028.
14. Cappuccio de Castro K., Cedran Coco J., Mendes dos Santos É., Artem Ataide J., Miliani Martinez R., Monteiro do Nascimento M. H., Prata J., Martins Lopes da Fonte P. R., Severino P., Gava Mazzola P., Rolim Baby A., Barbosa Souto E., Ribeiro de Araujo D., Moreni Lopes A. Pluronic® triblock copolymer-based nanoformulations for cancer therapy: A 10-year overview. Journal of Controlled Release. 2023;353:802–822. DOI: 10.1016/j.jconrel.2022.12.017.
15. Bakhrushina E. O., Pyzhov V. S., Sakharova P. S., Demina N. B., Chizhova D. A., Tabanskaya T. V., Lutfullin M. F. Block Copolymers of Ethylene Oxide and Propylene Oxide: Prospects for Medical and Pharmaceutical Application in Russia. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2023;13(2–1):333–344. (In Russ.) DOI: 10.30895/1991-2919-2023-530.
16. Bakhrushina E. O., Khodenok A. I., Pyzhov V. S., Solomatina P. G., Demina N. B., Korochkina T. V., Krasnyuk I. I. Study of the effect of active pharmaceutical ingredients of various classes of BCS on the parameters of thermosensitive systems based on poloxamers. Saudi Pharmaceutical Journal. 2023;31(10):101780. DOI: 10.1016/j.jsps.2023.101780.
17. Mirzaei S., Gholami M. H., Hashemi F., Zabolian A., Farahani M. V., Hushmandi K., Zarrabi A., Goldman A., Ashrafizadeh M., Orive G. Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discovery Today. 2022;27(2):436–455. DOI: 10.1016/j.drudis.2021.09.020.
18. Mehata A. K., Setia A., Vikas V., Malik A. K., Hassani R., Dailah H. G., Alhazmi H. A., Albarraq A. A., Mohan S., Muthu M. S. Vitamin E TPGS-Based Nanomedicine, Nanotheranostics, and Targeted Drug Delivery: Past, Present, and Future. Pharmaceutics. 2023;15(3):722. DOI: 10.3390/pharmaceutics15030722.
19. Yan H., Du X., Wang R., Zhai G. Progress in the study of D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) reversing multidrug resistance. Colloids and Surfaces B: Biointerfaces. 2021;205:111914. DOI: 10.1016/j.colsurfb.2021.111914.
20. Chen Y., Mo L., Wang X., Chen B., Hua Y., Gong L., Yang F., Li Y., Chen F., Zhu G., Ni W., Zhang C., Cheng Y., Luo Y., Shi J., Qiu M., Wu S., Tan Z., Wang K. TPGS-1000 exhibits potent anticancer activity for hepatocellular carcinoma in vitro and in vivo. Aging. 2020;12(2):1624–1642. DOI: 10.18632/aging.102704.
21. Kumar Panthi V., Bashyal S., Raj Paudel K., Docetaxel-loaded nanoformulations delivery for breast cancer management: Challenges, recent advances, and future perspectives. Journal of Drug Delivery Science and Technology. 2024;92:105314. DOI: 10.1016/j.jddst.2023.105314.
22. Dashputre N. L., Kadam J. D., Laddha U. D., Patil S. B., Udavant P. B., Kakad S. P. Targeting breast cancer using phytoconstituents: Nanomedicine-based drug deliver. European Journal of Medicinal Chemistry Reports. 2023;9:100116. DOI: 10.1016/j.ejmcr.2023.100116.
23. Zhang P., Xiao Y., Sun X., Lin X., Koo S., Yaremenko A. V., Qin D., Kong N., Farokhzad O. C., Tao W. Cancer nanomedicine toward clinical translation: Obstacles, opportunities, and future prospects. Med. 2023;4(3):147–167. DOI: 10.1016/j.medj.2022.12.001.
24. Cheberda A. E., Belousov D. Yu. Comparative pharmacoeconomic analysis of Paclical® and Taxol® in Russian Federation. Good Clinical Practice. 2016;(1):14–24. (In Russ.)
25. Lim W. T., Tan E. H., Toh C. K., Hee S. W., Leong S. S., Ang P. C. S., Wong N. S., Chowbay B. Phase I pharmacokinetic study of a weekly liposomal paclitaxel formulation (Genexol®-PM) in patients with solid tumors. Annals of Oncology. 2010;21(2):382–388. DOI: 10.1093/annonc/mdp315.
26. Nam S. H., Lee S.-W., Lee Y.-J., Kim Y. M. Safety and Tolerability of Weekly Genexol-PM, a Cremophor-Free Polymeric Micelle Formulation of Paclitaxel, with Carboplatin in Gynecologic Cancer: A Phase I Study. Cancer Research and Treatment. 2023;55(4):1346–1354. DOI: 10.4143/crt.2022.1436.
27. Wileński S., Koper A., Śledzińska P., Bebyn M., Koper K. Innovative strategies for effective paclitaxel delivery: Recent developments and prospects. Journal of Oncology Pharmacy Practice. 2024;30(2):367–384. DOI: 10.1177/10781552231208978.
28. Pei Q., Jiang B., Hao D., Xie Z. Self-assembled nanoformulations of paclitaxel for enhanced cancer theranostics. Acta Pharmaceutica Sinica B. 2023;13(8):3252–3276. DOI: 10.1016/j.apsb.2023.02.021.
29. Tu Y., Zhang W., Fan G., Zou C., Zhang J., Wu N., Ding J., Zou W. Q., Xiao H., Tan S. Paclitaxel-loaded ROS-responsive nanoparticles for head and neck cancer therapy. Drug Delivery. 2023;30(1):2189106. DOI: 10.1080/10717544.2023.2189106.
30. Kim T.-Y., Kim D.-W., Chung J.-Y., Shin S. G., Kim S.-C., Heo D. S., Kim N. K., Bang Y.-J. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clinical Cancer Research. 2004;10(11):3708–3716. DOI: 10.1158/1078-0432.CCR-03-0655.
31. Kim S. C., Kim D. W., Shim Y. H., Bang J. S., Oh H. S., Kim S. W., Seo M. H. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. Journal of Controlled Release. 2001;72(1–3):191–202. DOI: 10.1016/s0168-3659(01)00275-9.
32. Lee S.-W., Kim Y.-M., Cho C.-H., Kim Y. T., Kim S. M., Hur S. Y., Kim J.-H., Kim B.-G., Kim S.-C., Ryu H.-S., Kang S. B. An Open-Label, Randomized, Parallel, Phase II Trial to Evaluate the Efficacy and Safety of a Cremophor-Free Polymeric Micelle Formulation of Paclitaxel as First-Line Treatment for Ovarian Cancer: A Korean Gynecologic Oncology Group Study (KGOG-3021). Cancer Research and Treatment. 2018;50(1):195–203. DOI: 10.4143/crt.2016.376.
33. Lee S.-W., Kim Y.-M., Kim Y. T., Kang S. B. An open-label, multicenter, phase I trial of a cremophor-free, polymeric micelle formulation of paclitaxel combined with carboplatin as a first-line treatment for advanced ovarian cancer: a Korean Gynecologic Oncology Group study (KGOG-3016). Journal of Gynecologic Oncology. 2017;28(3):e26. DOI: 10.3802/jgo.2017.28.e26.
34. Hou X., Guan Y., He S., Wu Z., Bai J., Xu J., Wang J., Xu S., Zhu H., Yin Y., Yang X., Shi Y. A novel self-assembled nanoplatform based on retrofitting poloxamer 188 for triple-negative breast cancer targeting treatment. Chemico-Biological Interactions. 2023;384:110710. DOI: 10.1016/j.cbi.2023.110710.
35. Hu Y., Ran M., Wang B., Lin Y., Cheng Y., Zheng S. Co-Delivery of Docetaxel and Curcumin via Nanomicelles for Enhancing Anti-Ovarian Cancer Treatment. International Journal of Nanomedicine. 2020;15:9703–9715. DOI: 10.2147/IJN.S274083.
36. Viswanadh M. K., Agrawal N., Azad S., Jha A., Poddar S., Mahto S. K., Muthu M. S. Novel redox-sensitive thiolated TPGS based nanoparticles for EGFR targeted lung cancer therapy. International Journal of Pharmaceutics. 2021;602:120652. DOI: 10.1016/j.ijpharm.2021.120652.
37. Zhang H., Wang K., Zhang P., He W., Song A, Luan Y. Redox-sensitive micelles assembled from amphiphilic mPEG-PCL-SS-DTX conjugates for the delivery of docetaxel. Colloids and Surfaces B: Biointerfaces. 2016;142:89–97. DOI: 10.1016/j.colsurfb.2016.02.045.
38. Zhang E., Xing R., Liu S., Li P. Current advances in development of new docetaxel formulations. Expert Opinion on Drug Delivery. 2019;16(3):301–312. DOI: 10.1080/17425247.2019.1583644.
39. Zeng W., Luo Y., Gan D., Zhang Y., Deng H., Liu G. Advances in Doxorubicin-based nano-drug delivery system in triple negative breast cancer. Frontiers in Bioengineering and Biotechnology. 2023;11:1271420. DOI: 10.3389/fbioe.2023.1271420.
40. Wang M., Malfanti A., Bastiancich C., Préat V. Synergistic effect of doxorubicin lauroyl hydrazone derivative delivered by α-tocopherol succinate micelles for the treatment of glioblastoma. International Journal of Pharmaceutics: X. 2023;5:100147. DOI: 10.1016/j.ijpx.2022.100147.
41. Alshamrani S., Kumar A., Aldughaim M. S., Alghamdi K. M., Hussain M. D., Alanazi F. K., Kazi M. Development of Polymeric Micelles for Combined Delivery of Luteolin and Doxorubicin for Cancer Therapy. Journal of Cancer. 2024;15(14):4717–4730. DOI: 10.7150/jca.96402.
42. Paul M., Ghosh B., Biswas S. F127/chlorin e6-nanomicelles to enhance Ce6 solubility and PDT-efficacy mitigating lung metastasis in melanoma. Drug Delivery and Translational Research. 2025;15:621–637. DOI: 10.1007/s13346-024-01619-5.
43. Mesquita B., Singh A., Prats Masdeu C., Lokhorst N., Hebels E. R., van Steenbergen M., Mastrobattista E., Heger M., van Nostrum C. F., Oliveira S. Nanobody-mediated targeting of zinc phthalocyanine with polymer micelles as nanocarriers. International Journal of Pharmaceutics. 2024;655:124004. DOI: 10.1016/j.ijpharm.2024.124004.
44. Nikolaeva L. L., Sanarova E. V., Lantsova A. V. Gefitinib: Combination Therapy and Complex Delivery Systems (Review). Drug development & registration. 2024;13(1):26–33. (In Russ.) DOI: 10.33380/2305-2066-2024-13-1-1615.
45. Sanarova E. V., Lantsova A. V., Nikolaeva L. L., Oborotova N. A., Litvinenko Y. E., Solovieva N. L. Creation of a model of complex nanodelivery systems containing a tyrosine kinase inhibitor and a photosensitizer. Pharmaceutical Chemistry Journal. 2023;57(7):43-46. (In Russ.) DOI: 10.30906/0023-1134-2023-57-7-43-46.
46. Nikolaeva L. L., Sanarova E. V., Kolpaksidi A. P., Shcheglov S. D., Rudakova A. A., Baryshnikova M. A., Lantsova A. V. Effect of the composition of combined solid lipid particles with geftinib and a photosensitizer on their size, stability and cytotoxic activity. Biomedical Photonics. 2024;13(2):19–25. DOI: 10.24931/2413–9432–2023–13-1-19–25.
Supplementary files
|
1. Графический абстракт | |
Subject | ||
Type | Other | |
View
(910KB)
|
Indexing metadata ▾ |
Review
For citations:
Sanarova E.V., Nikolaeva L.L., Shceglov S.D., Kozlova Zh.M., Orlova O.L., Oborotova N.A., Lantsova A.V. Advances in the use of nanomicelles to enhance the efficacy of antitumour substances (review). Drug development & registration. (In Russ.) https://doi.org/10.33380/2305-2066-2025-14-2-2007