Preview

Drug development & registration

Advanced search

Effect of particle size on release of solid dispersed particles during the "Dissolution" test

https://doi.org/10.33380/2305-2066-2025-14-2-2055

Abstract

Introduction. The use of the solid disperse systems method to increase the solubility of lipophilic active pharmaceutical ingredients is industrially applicable using different technologies, but the influence of particle size on the dissolution of these systems, depending on the method, is not sufficiently reflected in the literature.

Aim. To study the influence of the particle size of amorphous solid disperse systems "darunavir-water-soluble polymer" obtained by solvent removal and hot melt extrusion on the dissolution of Darunavir in the biological pH range of 1.2; 4.5 and 6.8.

Materials and methods. Amorphous solid disperse systems were obtained in two ways: solvent removal and hot melt extrusion. Amorphism was determined by X-ray powder diffraction and electron microscopy. The efficiency of disperse systems was compared based on the results of the "Dissolution" test of powders mechanically ground to the same particle size in the biological pH range. The concentration of Darunavir in solution was determined using high-performance liquid chromatography with diode array detection.

Results and discussion. The best result was shown by a solid dispersion system based on the Eudragit® E PO polymer with a particle size D90 of less than 10 μm. The increase in the concentration of Darunavir relative to the crystalline form corresponding to Darunavir ethanolate was 324, 2485, and 740%, respectively, in dissolution media with pH 1.2; 4.5, and 6.8.

Conclusions. Methods for obtaining solid dispersion systems, such as solvent removal and hot melt extrusion with the same particle size, do not affect the concentration of the Darunavir API in solution in the biological pH range during the Dissolution test.

About the Authors

S. A. Zolotov
Limited Liability Company "AMEDART"
Russian Federation

42/24, Volgogradsky prospekt, Moscow, 109316



A. V. Panov
MIREA – Russian Technological University
Russian Federation

86, prospekt Vernadskogo, Moscow, 119571



References

1. Lobo S. Is there enough focus on lipophilicity in drug discovery? Expert Opinion on Drug Discovery. 2020;15(3):261–263. DOI: 10.1080/17460441.2020.1691995.

2. Hamed R., Awadallah A., Sunoqrot S., Tarawneh O., Nazzal S., AlBaraghthi T., Sayyad J. A., Abbas A. pH-Dependent Solubility and Dissolution Behavior of Carvedilol—Case Example of a Weakly Basic BCS Class II Drug. AAPS PharmSciTech. 2016;17(2):418–426. DOI: 10.1208/s12249-015-0365-2.

3. Lust A., Laidmäe I., Palo M., Meos A., Aaltonen J., Veski P., Heinämäki J., Kogermann K. Solid-state dependent dissolution and oral bioavailability of piroxicam in rats. European Journal of Pharmaceutical Sciences. 2013;48(1–2):47–54. DOI: 10.1016/j.ejps.2012.10.005.

4. Xie B., Liu Y., Li X., Yang P., He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharmaceutica Sinica B. 2024;14(11):4683–4716. DOI: 10.1016/j.apsb.2024.08.027.

5. Vandana K.R., Prasanna Raju Y., Harini Chowdary V., Sushma M., Vijay Kumar N. An overview on in situ micronization technique – An emerging novel concept in advanced drug delivery. Saudi Pharmaceutical Journal. 2014;22(4):283–289. DOI: 10.1016/j.jsps.2013.05.004.

6. Zhang J., Guo M., Luo M., Cai T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian Journal of Pharmaceutical Sciences. 2023;18(4):100834. DOI: 10.1016/j.ajps.2023.100834.

7. Budiman A., Lailasari E., Nurani N. V., Yunita E. N., Anastasya G., Aulia R. N., Novianty Lestari I., Subra L., Aulifa D. L. Ternary Solid Dispersions: A Review of the Preparation, Characterization, Mechanism of Drug Release, and Physical Stability. Pharmaceutics. 2023;15(8):2116. DOI: 10.3390/pharmaceutics15082116.

8. Saha U., De R., Das B. Interactions between loaded drugs and surfactant molecules in micellar drug delivery systems: A critical review. Journal of Molecular Liquids. 2023;382:121906. DOI: 10.1016/j.molliq.2023.121906.

9. Uttreja P., Karnik I., Youssef A. A. A., Narala N., Elkanayati R. M., Baisa S., Alshammari N. D., Banda S., Kumar Vemula S., Repka M. A. Self-Emulsifying Drug Delivery Systems (SEDDS): Transition from Liquid to Solid—A Comprehensive Review of Formulation, Characterization, Applications, and Future Trends. Pharmaceutics. 2025;17(1):63. DOI: 10.3390/pharmaceutics17010063.

10. Elsegaie D., El-Nabarawi M. A., Mahmoud H. A., Teaima M., Louis D. A Comparative Study on Cyclodextrin Derivatives in Improving Oral Bioavailability of Etoricoxib as a Model Drug: Formulation and Evaluation of Solid Dispersion-Based Fast-Dissolving Tablets. Biomedicines. 2023;11(9):2440. DOI: 10.3390/biomedicines11092440.

11. Bhujbal S. V., Mitra B., Jain U., Gong Y., Agrawal A., Karki S., Taylor L. S., Kumar S., Zhou Q. (T.) Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharmaceutica Sinica B. 2021;11(8):2505–2536. DOI: 10.1016/j.apsb.2021.05.014.

12. Niazi S. K. Handbook of bioequivalence testing. 2nd Edition. Boca Raton: CRC Press; 2014. 2 ed. 838 p.

13. Reddy B. V. R., Jyothi G., Reddy B. S., Raman N. V. V. S. S., Reddy K. S. C., Rambabu C. Stability-Indicating HPLC Method for the Determination of Darunavir Ethanolate. Journal of Chromatographic Science. 2012;51(5):471–476. DOI: 10.1093/chromsci/bms165.

14. Fine-Shamir N., Dahan A. Methacrylate-Copolymer Eudragit EPO as a Solubility-Enabling Excipient for Anionic Drugs: Investigation of Drug Solubility, Intestinal Permeability, and Their Interplay. Molecular Pharmaceutics. 2019;16(7):2884–2891. DOI: 10.1021/acs.molpharmaceut.9b00057.

15. Frank D. S., Prasad P., Iuzzolino L., Schenck L. Dissolution Behavior of Weakly Basic Pharmaceuticals from Amorphous Dispersions Stabilized by a Poly(dimethylaminoethyl Methacrylate) Copolymer. Molecular Pharmaceutics. 2022;19(9):3304–3313. DOI: 10.1021/acs.molpharmaceut.2c00456.

16. Habyalimana V., Kindenge Mbinze J., Yemoa A. L., Waffo C., Diallo T., Tshilombo N. K., Kadima Ntokamunda J.-L., Lebrun P., Hubert P., Djang'eing'a Marini R. Application of design space optimization strategy to the development of LC methods for simultaneous analysis of 18 antiretroviral medicines and 4 major excipients used in various pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis. 2017;139:8–21. DOI: 10.1016/j.jpba.2017.02.040.

17. Son Y. J., Kim Y., Kim W. J., Jeong S. Y., Yoo H. S. Antibacterial Nanofibrous Mats Composed of Eudragit for pH-Dependent Dissolution. Journal of Pharmaceutical Sciences. 2015;104(8):2611–2618. DOI: 10.1002/jps.24521.

18. Li Y., Zhou L., Zhang M., Li R., Di G., Liu H., Wu X. Micelles based on polyvinylpyrrolidone VA64: A potential nanoplatform for the ocular delivery of apocynin. International Journal of Pharmaceutics. 2022;615:121451. DOI: 10.1016/j.ijpharm.2022.121451.

19. Inam S., Irfan M., ul ain Lali N., Syed H. K., Asghar S., Khan I. U., Khan S.-U.-D., Iqbal M. S., Zaheer I., Khames A., Abou-Taleb H. A., Abourehab M. A. S. Development and Characterization of Eudragit® EPO-Based Solid Dispersion of Rosuvastatin Calcium to Foresee the Impact on Solubility, Dissolution and Antihyperlipidemic Activity. Pharmaceuticals. 2022;15(4):492. DOI: 10.3390/ph15040492.

20. Trenkenschuh E., Blattner S. M., Hirsh D., Hoffmann R., Luebbert C., Schaefer K. Development of Ternary Amorphous Solid Dispersions Manufactured by Hot-Melt Extrusion and Spray-Drying–Comparison of In Vitro and In Vivo Performance. Molecular Pharmaceutics. 2024;21(3):1309–1320. DOI: 10.1021/acs.molpharmaceut.3c00696.


Supplementary files

1. Графический абстракт
Subject
Type Other
View (1MB)    
Indexing metadata ▾

Review

For citations:


Zolotov S.A., Panov A.V. Effect of particle size on release of solid dispersed particles during the "Dissolution" test. Drug development & registration. 2025;14(2):149-155. (In Russ.) https://doi.org/10.33380/2305-2066-2025-14-2-2055

Views: 3732


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)