Preview

Drug development & registration

Advanced search

The development and study of herbal composition for complex therapy of influenza A

https://doi.org/10.33380/2305-2066-2025-14-3-2022

Abstract

Introduction. Influenza type A is a socially significant infectious disease. Viral variability, mutations and reassortment make vaccination difficult. New drugs for specific therapy need to be developed because resistance to the existing drugs has appeared. A number of plant extracts have antiviral activity against the influenza type A virus, research is relevant in this area. The development of a species is also relevant, which has both specific antiviral activity and affects the symptom complex accompanying this disease.

Aim. To develop a medicinal herbal collection for specific and symptomatic treatment of influenza type A.

Materials and methods. There were considered 14 pharmacopoeial types of medicinal plant raw materials and 3 herbal compositions based on them. The studies of biologically active substances in raw materials were carried out according to the methods of the State Pharmacopoeia of Russian Federation, 15th edition. Determination of antiviral activity was carried out on Madin-Darby canine kidney cells (MDCK) culture using the hemagglutination reaction.

Results and discussion. There were studied the quantitative content of the main groups of biologically active substances (polysaccharides, tannins, flavonoids and ascorbic acid) in 3 variants of herbal compositions (collection No.No. 1, 2 and 3) and decoctions based on them. The variant of the herbal composition with the maximum content of biologically active substances was established. Antiviral activity against the influenza A virus of two herbal compositions was demonstrated.

Conclusion. The composition of the medicinal herbal collection is proposed, which is promising for complex therapy of influenza. The antiviral effect against the influenza virus type A has been proven.

About the Authors

A. Ali Alshami
MIREA – Russian Technological University
Russian Federation

78, prospekt Vernadskogo, Moscow, 119571



A. V. Panov
MIREA – Russian Technological University
Russian Federation

78, prospekt Vernadskogo, Moscow, 119571



S. A. Kedik
MIREA – Russian Technological University
Russian Federation

78, prospekt Vernadskogo, Moscow, 119571



E. A. Amirgulova
MIREA – Russian Technological University
Russian Federation

78, prospekt Vernadskogo, Moscow, 119571



E. N. Vetrova
N. F. Gamaleya Federal Research Center for Epidemiology & Microbiology
Russian Federation

18, Gamaleyi str., Moscow, 123098



E. A. Dorovskikh
I. M. Sechenov First MSMU of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

8/2, Trubetskaya str., Mosсow, 119991



T. Yu. Kovaleva
I. M. Sechenov First MSMU of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

8/2, Trubetskaya str., Mosсow, 119991



References

1. Chernyshova A. I., Zhirnov O. P. Two Phylogenetic Cohorts of the Nucleocapsid Protein NP and Their Correlation with the Host Range of Influenza A Viruses. Doklady Biochemistry and Biophysics. 2024;516:93–97. DOC: 10.1134/S1607672924700789.

2. Krejcova L., Michalek P., Hynek D., Adam V., Kizek R. Structure of influenza viruses, connected with influenza life cycle. Journal of Metallomics and Nanotechnologies. 2015;2(1):13–19.

3. Lina B. History of influenza pandemics. In: Raoult D., Drancourt M., editors. Paleomicrobiology. Past Human Infections. Berlin, Heidelberg: Springer-Verlag; 2008. P. 199–211. DOI: 10.1007/978-3-540-75855-6_12.

4. Wu Z.-Q., Zhang Y., Zhao N., Yu Z., Pan H., Chan T.-C., Zhang Z.-R., Liu S.-L. Comparative Epidemiology of Human Fatal Infections with Novel, High (H5N6 and H5N1) and Low (H7N9 and H9N2) Pathogenicity Avian Influenza A Viruses. International Journal of Environmental Research and Public Health. 2017;14(3):263. DO: 10.3390/ijerph14030263.

5. Walker P. J., Siddell S. G., Lefkowitz E. J., Mushegian A. R., Adriaenssens E. M., Alfenas-Zerbini P., Dempsey D. M., Dutilh B. E., García M. L., Hendrickson R. C., Junglen S., Krupovic M., Kuhn J. H., Lambert A. J., Łobocka M., Oksanen H. M., Orton R. J., Robertson D. L., Rubino L., Sabanadzovic S., Simmonds P., Smith D. B., Suzuki N., Van Doorslaer K., Vandamme A.-M., Varsani A., Zerbini F. M. Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses (2022). Archives of Virology. 2022;167(11):2429–2440. DOI: 10.1007/s00705-022-05516-5.

6. Saunders-Hastings P., Krewski D. Reviewing the History of Pandemic Influenza: Understanding Patterns of Emergence and Transmission. Pathogens. 2016;5(4):66. DOI: 10.3390/pathogens5040066.

7. Treanor J. J. Influenza viruses. In: Kaslow R. A., Stanberry L. R., Powers A. M., editors. Viral Infections of Humans. Epidemiology and Control. New York: Springer US; 2023. P. 1–57.

8. Woźniak-Kosek A., Kempińska-Mirosławska B., Hoser G. Detection of the influenza virus yesterday and now. Acta Biochimica Polonica. 2014;61(3):465–470.

9. Vasin A. V. New approaches to the development of diagnostics and chemotherapy for influenza using genomic and postgenomic technologies. [Dissertation.] St. Petersburg; 2018. 38 p. Available at: https://www.dissercat.com/content/novye-podkhody-k-razrabotke-sredstv-diagnostiki-i-khimioterapii-grippa-s-ispolzovaniem-genom. Accessed: 12.01.2025. (In Russ.)

10. Mehrbod P., Abdalla M. A., Njoya E. M., Ahmed A. S., Fotouhi F., Farahmand B., Gado D. A., Tabatabaian M., Fasanmi O. G., Eloff J. N., McGaw L. J., Fasina F. O. South African medicinal plant extracts active against influenza A virus. BMC Complementary and Alternative Medicine. 2018;18(1):112. DOI: 10.1186/s12906-018-2184-y.

11. Mousa H. A.-L. Prevention and Treatment of Influenza, Influenza-Like Illness, and Common Cold by Herbal, Complementary, and Natural Therapies. Journal of Evidence-Based Complementary & Alternative Medicine. 2017;22(1):166–174. DOI: 10.1177/2156587216641831.

12. Kim Y., Narayanan S., Chang K.-O. Inhibition of influenza virus replication by plant-derived isoquercetin. Antiviral Research. 2010;88(2):227–235. DOI: 10.1016/j.antiviral.2010.08.016.

13. Oriola A. O., Oyedeji A. O. Essential Oils and Their Compounds as Potential Anti-Influenza Agents. Molecules. 2022;27(22):7797. DOI: 10.3390/molecules27227797.

14. Takashita E. Influenza Polymerase Inhibitors: Mechanisms of Action and Resistance. Cold Spring Harbor Perspectives in Medicine. 2021;11(5):a038687. DOI: 10.1101/cshperspect.a038687.

15. Lipkowski A., Litwińska B. The use of viburnum opulus or its tissues or products thereof for the prevention or treatment of herpes virus infections. Patent № WO2012091589A1. 05.07.2012. Available at: https://patents.google.com/patent/WO2012091589A1/da. Accessed: 12.01.2025.

16. Stoyanova A., Popatanasov А., Rashev V., Tancheva L., Quideau S., Galabov A. S. Effect of castalagin against HSV-1 infection in newborn mice. Natural Product Research. 2023;37(24):4156–4161. DOI: 10.1080/14786419.2023.2173191.

17. Yao X., Ling Y., Guo S., Wu W., He S., Zhang Q., Zou M., Nandakumar K. S., Chen X., Liu S. Tatanan A from the Acorus calamus L. root inhibited dengue virus proliferation and infections. Phytomedicine. 2018;42:258–267. DOI: 10.1016/j.phymed.2018.03.018.

18. Tribudi Y. A., Agustin A. T., Setyaningtyas D. E., Gusmalawati D. Bioactive Compound Profile and Biological Modeling Reveals the Potential Role of Purified Methanolic Extract of Sweet Flag (Acorus calamus L.) in Inhibiting the Dengue Virus (DENV) NS3 Protease-Helicase. Indonesian Journal of Chemistry. 2022;22(2):331–341. DOI: 10.22146/ijc.68317.

19. Huang Y., Li Z., Ma Y., Wu Q., Kong J., Zhao L., Li S., Li J. Screening for Active Compounds of Acorus calamus against SARS-CoV-2 Viral Protease and Mechanism Prediction. Pharmaceuticals. 2024;17(3):325. DOI: 10.3390/ph17030325.

20. Joshi S. V., Gupta S., Tripathi K., Mishra S., Kumar S. Antiviral plants of India. Cuttack: APRF Publisher; 2024.

21. Wang J., Chen X., Wang W., Zhang Y., Yang Z., Jin Y., Ge H. M., Li E., Yang G. Glycyrrhizic acid as the antiviral component of Glycyrrhiza uralensis Fisch. against coxsackievirus A16 and enterovirus 71 of hand foot and mouth disease. Journal of Ethnopharmacology. 2013;147(1):114–121. DOI: 10.1016/j.jep.2013.02.017.

22. Kuo K.-K., Chang J.-S., Wang K.-C., Chiang L.-C. Water extract of Glycyrrhiza uralensis inhibited enterovirus 71 in a human foreskin fibroblast cell line. The American Journal of Chinese Medicine. 2009;37(2):383–394. DOI: 10.1142/S0192415X09006904.

23. Song W., Si L., Ji S., Wang H., Fang X.-M., Yu L.-Y., Li R.-Y., Liang L.-N., Zhou D., Ye M. Uralsaponins M-Y, antiviral triterpenoid saponins from the roots of Glycyrrhiza uralensis. Journal of Natural Products. 2014;77(7):1632–1643. DOI: 10.1021/np500253m.

24. Li Z., Dong M., Chen Z., Zhang C., Jiang J., Liu M., Cui Q. Combining virus-based affinity ultrafiltration method with serum pharmacochemistry to identify the antiviral pharmacodynamic substances in licorice. Journal of Ethnopharmacology. 2025;338(Part 1):118978. DOI: 10.1016/j.jep.2024.118978.

25. Angourani H. R., Zare A., Moghadam M. M., Ramazani A., Mastinu A. Investigation on the Essential Oils of the Achillea Species: From Chemical Analysis to the In Silico Uptake against SARS-CoV-2 Main Protease. Life. 2023;13(2):378. DOI: 10.3390/life13020378.

26. Rezatofighi S. E., Seydabadi A., Seyyed Nejad S. M. Evaluating the Efficacy of Achillea millefolium and Thymus vulgaris Extracts Against Newcastle Disease Virus in Ovo. Jundishapur Journal of Microbiology. 2014;7(2):e9016. DOI: 10.5812/jjm.9016.

27. Moradi M.-T., Karimi A., Lorıgooini Z., Pourgheysari B., Alidadi S., Hashemi L. In vitro anti influenza virus activity, antioxidant potential and total phenolic content of twelve Iranian medicinal plants. Marmara Pharmaceutical Journal. 2017;21(4):843–851. DOI: 10.12991/mpj.2017.10.

28. Chiang L. C., Chiang W., Chang M. Y., Ng L. T., Lin C. C. Antiviral activity of Plantago major extracts and related compounds in vitro. Antiviral Research. 2002;55(1):53–62. DOI: 10.1016/s0166-3542(02)00007-4.

29. Chiang L.-C., Chiang W., Chang M.-Y., Lin C.-C. In vitro cytotoxic, antiviral and immunomodulatory effects of Plantago major and Plantago asiatica. The American Journal of Chinese Medicine. 2003;31(2):225–234. DOI: 10.1142/S0192415X03000874.

30. Povnitsa O., Bilyavska L., Pankivska Yu., Likhanov A., Dorovskyh A., Lysenko V., Lokshin M., Zahorodnia S. In vitro Antiviral Activity of Leaf Extracts Plantago major, Plantago lanceolata, Rubus idaeus. Mikrobiolohichnyi Zhurnal. 2022;(1):49–62. DOI: 10.15407/microbiolj84.01.044.

31. Kutluk I., Aslan M., Orhan I. E., Özçelik B. Antibacterial, antifungal and antiviral bioactivities of selected Helichrysum species. South African Journal of Botany. 2018;119:252–257. DOI: 10.1016/j.sajb.2018.09.009.

32. Kaya S., Erkan S., Karakaş D. Investigation of the Effect of Main Components of Wild Thyme on Covid-19 by Computational Methods. Cumhuriyet Science Journal. 2023;44(4):665–670. DOI: 10.17776/csj.1328641.

33. Glatthaar-Saalmüller B., Sacher F., Esperester A. Antiviral activity of an extract derived from roots of Eleutherococcus senticosus. Antiviral Research. 2001;50(3):223–228. DOI: 10.1016/s0166-3542(01)00143-7.

34. Knipping K., Garssen J., van’t Land B. An evaluation of the inhibitory effects against rotavirus infection of edible plant extracts. Virology Journal. 2012;9:137. DOI: 10.1186/1743-422X-9-137.

35. Uncini Manganelli R.E., Zaccaro L., Tomei P. E. Antiviral activity in vitro of Urtica dioica L., Parietaria diffusa M. et K. and Sambucus nigra L. Journal of Ethnopharmacology. 2005;98(3):323–327. DOI: 10.1016/j.jep.2005.01.021.

36. Meneses Lopez R., Ocazionez R. E., Martinez J. R., Stashenko E. E. Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro. Annals of Clinical Microbiology and Antimicrobials. 2009;8:8. DOI: 10.1186/1476-0711-8-8.

37. Gilling D. H., Kitajima M., Torrey J. R., Bright K. R. Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. Journal of Applied Microbiology. 2014;116(5):1149–1163. DOI: 10.1111/jam.12453.

38. Sánchez G., Aznar R. Evaluation of Natural Compounds of Plant Origin for Inactivation of Enteric Viruses. Food and Environmental Virology. 2015;7:183–187. DOI: 10.1007/s12560-015-9181-9.

39. Okino C. H., Melito G. R., de Almeida Astolfo M. E., Da Mata Martins M. E., Junior S. B., Ferreira M. D. Antiviral Effect of Different Essential Oils on Avian Coronavirus. Avian Diseases. 2024;68(3):254–258. DOI: 10.1637/aviandiseases-D-24-00015.

40. Blank D. E., de Oliveira Hübner S., Alves G. H., Lima Cardoso C. A., Freitag R. A., Cleff M. B. Chemical composition and antiviral effect of extracts of Origanum vulgare. Advances in Bioscience and Biotechnology. 2019;10(7):188–196. DOI: 10.4236/abb.2019.107014.

41. Trokhymchuk T. Yu., Shalamay A. S., Zavelevich M. P., Palchykovska L. G., Vasylchenko O. V., Rybalko S. L., Starosyla D. B., Diadiun S. T. Anti-HIV activity of ellagitannins from alder tree fruits. Вiopolymers and Cell. 2018;34(3):218–228. DOI: 10.7124/bc.00097C.

42. Goncharova O. V. Phytotherapy in the prevention of acute respiratory infections in children. Pediatrician's Practice. 2011;5:39–43. (In Russ.)

43. Pletnev V. V. Pletnev's drops with antiviral and immunomodulatory effects. Patent RUS № RU2553308C1. 10.06.2015. Available at: https://patents.google.com/patent/RU2553308C1/ru. Accessed: 12.01.2025. (In Russ.)

44. Pechenevskiy A. V., Pechenevskiy A. A., Kosenko N. V., Severtsev V. A. A collection of medicinal plants with antiviral, antimicrobial and immunomodulatory effects. Patent RUS № RU2160596C1. 20.12.2000. Available at: https://patents.google.com/patent/RU2160596C1/ru. Accessed: 12.01.2025. (In Russ.)

45. Chon H. Medicinal herbs and plant extracts for influenza: Bioactivity, mechanism of anti-influenza effects, and modulation of immune responses. Studies in Natural Products Chemistry. 2012;38:305–323. DOI: 10.1016/B978-0-444-59530-0.00011-3.

46. Adetunji C. O., Ajayi O. O., Akram M., Olaniyan O. T., Chishti M. A., Abel I., Olaniyan S., Adetunji J. B., Olaniyan M., Awotunde S. O. Medicinal plants used in the treatment of influenza A virus infections. In: Dua K., Nammi S., Chang D., Kumar Chellappan D., Gupta G., Collet T., editors. Medicinal Plants for Lung Diseases. A Pharmacological and Immunological Perspective. New York: Springer; 2021. P. 417–435.

47. Kim S., Kim Y., Kim J. W., Hwang Y. B., Kim S. H., Jang Y. H. Antiviral Activity of Plant-derived Natural Products against Influenza Viruses. Journal of Life Science. 2022;32(5):375–390.

48. Boora S., Khan A., Soniya K., Yadav S., Kaushik S., Kumar R., Chhikara S., Kaushik S. Antiviral potential of medicinal plants against influenza viruses: A systematic review. Research Journal of Pharmacy and Technology. 2023;16(3):1503–1513. DOI: 10.52711/0974-360X.2023.00247.

49. State Pharmacopoeia of the Russian Federation. XV edition. Мoscow: Ministry of Health of the Russian Federation; 2023. 3576 p. (In Russ.)

50. Sergunova E. V., Sorokina A. A. Investigation of phenolic compounds of brier (Rosa cinnamomea) fruits and formulations by high performance liquid chromatography. Pharmacy. 2012;5:11–13. (In Russ.)

51. Sharifi-Rad J., Quispe C., Vergara C. V., Kitic D., Kostic M., Armstrong L., Khan Shinwari Z., Talha Khalil A., Brdar-Jokanović M., Ljevnaić-Mašić B., Varoni E. M., Iriti M., Leyva-Gómez G., Herrera-Bravo J., Salazar L. A., Cho W. C. Genus Viburnum: Therapeutic Potentialities and Agro-Food-Pharma Applications. Oxidative Medicine and Cellular Longevity. 2021;2021:3095514. DOI: 10.1155/2021/3095514.

52. Ștefănescu R., Ciurea C.N., Mare A. D., Man A., Nisca A., Nicolescu A., Mocan A., Babotă M., Coman N.-A., Tanase C. Quercus Robur Older Bark—A Source of Polyphenolic Extracts with Biological Activities. Applied Sciences. 2022;12(22):11738. DOI: 10.3390/app122211738.

53. Yadav D., Srivastava S., Tripathi Y. B. Acorus calamus: A review. International Journal of Scientific Research in Biological Sciences. 2019;6(4):62–67. DOI: 10.26438/ijsrbs/v6i4.6267.

54. Yang Y.-N., Liu Y.-Y., Feng Z.-M., Jiang J.-S., Zhang P.-C. Seven new flavonoid glycosides from the roots of Glycyrrhiza uralensis and their biological activities. Carbohydrate Research. 2019;485:107820. DOI: 10.1016/j.carres.2019.107820.

55. He R., Ma T.-T., Gong M.-X., Xie K.-L., Wang Z.-M., Li J. The correlation between pharmacological activity and contents of eight constituents of Glycyrrhiza uralensis Fisch. Heliyon. 2023;9(3):e14570. DOI: 10.1016/j.heliyon.2023.e14570.

56. Saifulazmi N. F., Rohani E. R., Harun S., Bunawan H., Hamezah H. S., Nor Muhammad N. A., Azizan K. A., Ahmed Q. U., Fakurazi S., Mediani A., Sarian M. N. A Review with Updated Perspectives on the Antiviral Potentials of Traditional Medicinal Plants and Their Prospects in Antiviral Therapy. Life. 2022;12(8):1287. DOI: 10.3390/life12081287.

57. Medicinal plant raw materials. Мoscow: Izdatel’stvo standartov; 1980. 296 p. (In Russ.)

58. Lobanova I. E., Filippova E. I., Vysochina G. I., Mazurkova N. A. Antiviral properties of wild and cultivated plants of southwestern Siberia. Flora and vegetation of Asian Russia; 2016;2(22):64–72. (In Russ.)

59. Botirov E. K., Bonacheva V. M., Kolomiets N. E. Chemical composition and biological activity of metabolites of the genus Equisetum. Chemistry of plant raw material. 2021;1:5–26. (In Russ.) DOI: 10.14258/jcprm.2021017760.

60. Kizi K. S. A. Pharmacological Properties of Plantago Major L. and Its Active Constituents. International Journal of Medical Science and Public Health Research. 2022;3(4):9–12. DOI: 10.37547/ijmsphr/Volume03Issue04-03.

61. Adom M. B., Taher M., Mutalabisin M. F., Amri M. S., Abdul Kudos M. B., Wan Sulaiman M. W. A., Sengupta P., Susanti D. Chemical constituents and medical benefits of Plantago major. Biomedicine & Pharmacotherapy. 2017;96:348–360. DOI: 10.1016/j.biopha.2017.09.152.

62. Kurkin V. A. Fundamentals of Phytotherapy. Samara: LLC "Ofort", GOU VPO «SamGMU Roszdrava»; 2009. 963 p. (In Russ.)

63. Gagueva A. U., Stepanova E. F. Drug products is expectorative action. The role of plant sources in therapy of cough: the coverage of studies, range, demand. Astrakhan Medical Journal. 2018;13(4):23–31. (In Russ.) DOI: 10.17021/2018.13.4.23.31.

64. Jia A., Zhang Y., Gao H., Zhang Z., Zhang Y., Wang Z., Zhang J., Deng B., Qiu Z., Fu C. A review of Acanthopanax senticosus (Rupr and Maxim.) harms: From ethnopharmacological use to modern application. Journal of Ethnopharmacology. 2021;268:113586. DOI: 10.1016/j.jep.2020.113586.

65. Bhusal K. K., Magar S. K., Thapa R., Lamsal A., Bhandari S., Maharjan R., Shrestha S., Shrestha J. Nutritional and pharmacological importance of stinging nettle (Urtica dioica L.): A review. Heliyon. 2022;8(6):e09717. DOI: 10.1016/j.heliyon.2022.e09717.

66. Sharifi-Rad M., Berkay Yılmaz Y., Antika G., Salehi B., Tumer T. B., Kulandaisamy Venil C., Das G., Patra J. K., Karazhan N., Akram M., Iqbal M., Imran M., Sen S., Acharya K., Dey A., Sharifi-Rad J. Phytochemical constituents, biological activities, and health-promoting effects of the genus Origanum. Phytotherapy Research. 2021;35(1):95–121. DOI: 10.1002/ptr.6785.

67. Protsenko M. A., Mazurkova N. A., Filippova E. I., Kukushkina T. A., Lobanova I. E., Pshenichkina Y. A., Vysochina G. I. Anti-Influenza Activity of Extracts from Plants of the Lamiaceae Family. Russian Journal of Bioorganic Chemistry. 2022;48(7):1534–1541. DOI: 10.1134/S1068162022070238.

68. Sargin S. A. Potential anti-influenza effective plants used in Turkish folk medicine: A review. Journal of Ethnopharmacology. 2021;265:113319. DOI: 10.1016/j.jep.2020.113319.

69. Dahija S., Čakar J., Vidic D., Maksimović M., Parić A. Total phenolic and flavonoid contents, antioxidant and antimicrobial activities of Alnus glutinosa (L.) Gaertn., Alnus incana (L.) Moench and Alnus viridis (Chaix) DC. extracts. Natural Product Research. 2014;28(24):2317–2320. DOI: 10.1080/14786419.2014.931390.

70. Ilyicheva T. N., Netesov S. V., Gureev V. N. Microbiology practical work "Influenza viruses". Novosibirsk: Novosibirsk State University; 2012. 86 p. (In Russ.)

71. Freshni R. Ya. Animal Cell Culture: A Practical Guide. Moscow: BINOM. Laboratoriya znaniy; 2010. 691 p. (In Russ.)

72. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods. 1983;65(1–2):55–63. DOI: 10.1016/0022-1759(83)90303-4.

73. Reed L. J., Muench H. A simple method of Estimating fifty per cent endpoints. American Journal of Epidemiology. 1938;27(3):493–497. DOI: 10.1093/oxfordjournals.aje.a118408.

74. Davies H. W., Appleyard G., Cunningham P., Pereira M. S. The use of a continuous cell line for the isolation of influenza viruses. Bulletin of the World Health Organization. 1978;56(6):991–993.

75. Klenk H.-D., Rott R., Orlich M., Blödorn J. Activation of influenza A viruses by trypsin treatment. Virology. 1975;68(2):426–439. DOI: 10.1016/0042-6822(75)90284-6.

76. Sukhanova S. M., Putruchuk E. M., Generalov A. A. Trypsin. Properties and Use in the Production of Biological Medicinal Products. BIOpreparations. Prevention, Diagnosis, Treatment. 2018;18(2):106–113. (In Russ.) DOI: 10.30895/2221-996X-2018-18-2-106-113.

77. McAuley J. L., Gilbertson B. P., Trifkovic S., Brown L. E., McKimm-Breschkin J. L. Influenza Virus Neuraminidase Structure and Functions. Frontiers in Microbiology. 2019;10:39. DOI: 10.3389/fmicb.2019.00039.

78. Zdrodovsky P. F., Sokolova M. I., editors. Guide to laboratory diagnostics of viral and rickettsial diseases. Moscow: Meditsina; 1965. 591 p. (In Russ.)

79. Guide to experimental (preclinical) study of pharmacological substances. Moscow: Medicina Publishing House, Shiko Publishing House; 2005. 826 p. (In Russ.)


Supplementary files

1. Графический абстракт
Subject
Type Other
View (1MB)    
Indexing metadata ▾

Review

For citations:


Ali Alshami A., Panov A.V., Kedik S.A., Amirgulova E.A., Vetrova E.N., Dorovskikh E.A., Kovaleva T.Yu. The development and study of herbal composition for complex therapy of influenza A. Drug development & registration. (In Russ.) https://doi.org/10.33380/2305-2066-2025-14-3-2022

Views: 151


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)