Preview

Drug development & registration

Advanced search

Effects of glycyrrhizinic acid on neuromotor function in leptin-resistant mice

https://doi.org/10.33380/2305-2066-2025-14-3-2030

Abstract

Introduction. Among all types, type 2 diabetes mellitus (T2DM) shows the most rapidly growing prevalence, and has the greatest number of complications including peripheral polyneuropathy, which is aggravated with age. In view of this, the search for effective agents for the correction of T2DM-associated polyneuropathy is highly relevant.

Aim. To study the effects of course administration (1 month) of glycyrrhizinic acid (GA) (20 mg/kg/d) on neuromotor function in female leptin-resistant diabetic db/db mice of different ages using stimulation electroneuromyography (ENMG).

Materials and methods. The study was conducted in female C57Bl/Ks-db+/+m (db/db) mice weighing 40–48 g, aged 2 months (n = 15) or 6 months (n = 10) that were randomized into 4 groups: 1) control (C) (2 months (C2): n = 7; 6 months (C6): n = 5); 2) GA-treated (20 mg/kg/d p/o × 1 month) (2 months (GA2): n = 8; 6 months (GA6): n = 5). Following 1 month of treatment, an ENMG study of m. gastrocnemius and m. biceps brachii electrical activity was conducted using the following protocols: single stimulus presentation, electrical stimulation-induced fatigue, and repetitive stimulation. Additionally, nerve conduction velocity (NCV) was measured for n. ischiadicus.

Results and discussion. In the GA2 group, compound muscle action potential (CMAP) peak amplitude and area in the biceps were 37.4 % (p < 0.05) and 44.5 % (p < 0.01) lower than respective control values, which may be related to possible hypokalemia induced by long-term GA use, including that resulting from 11β-hydroxysteroid dehydrogenase-2 inhibition. The relatively smaller reduction of the same parameters observed in the GA6 group may be explained by lower basal enzyme activity in aged animals. CMAP durations in the biceps were 21.7 % lower in the C6 group vs. C2 (p < 0.05), while threshold current values were 48.4 and 50.4 % higher in both GA2 and C6 groups vs. C2 (p < 0.01 for both). The decrease in CMAP duration and increase in threshold currents possibly reflects age-associated changes including muscle fiber and motor unit loss.

Conclusion. GA (20 mg/kg/day × 1 months) in young adult (2 months) female leptin-resistant mice reduced single stimulus-induced CMAP amplitude and area in the biceps muscle. The compound had no effect on sciatic NCV and post-ESIF recovery rates of the gastrocnemius and biceps in both 2 month- and 6 month-old mice.

About the Authors

T. M. Matuzok
Saint-Petersburg State Chemical and Pharmaceutical University; N. P. Behtereva Institute of the Human Brain of the Russian Academy of Sciences
Russian Federation

14A, Prof. Popova str., Saint-Petersburg, 197022; 
9, Akademika Pavlova str., Saint-Petersburg, 197022



V. A. Prikhodko
Saint-Petersburg State Chemical and Pharmaceutical University; N. P. Behtereva Institute of the Human Brain of the Russian Academy of Sciences
Russian Federation

14A, Prof. Popova str., Saint-Petersburg, 197022; 
9, Akademika Pavlova str., Saint-Petersburg, 197022



S. M. Napalkova
Saint-Petersburg State Chemical and Pharmaceutical University
Russian Federation

14A, Prof. Popova str., Saint-Petersburg, 197022



O. V. Buyuklinskaya
Saint-Petersburg State Chemical and Pharmaceutical University
Russian Federation

14A, Prof. Popova str., Saint-Petersburg, 197022



S. V. Okovityi
Saint-Petersburg State Chemical and Pharmaceutical University; N. P. Behtereva Institute of the Human Brain of the Russian Academy of Sciences
Russian Federation

14A, Prof. Popova str., Saint-Petersburg, 197022; 
9, Akademika Pavlova str., Saint-Petersburg, 197022



References

1. Ziegler D., Papanas N., Schnell O., Nguyen B. D. T., Nguyen K. T., Kulkantrakorn K., Chaicharn. Current concepts in the management of diabetic polyneuropathy. Journal of Diabetes Investigation. 2021;12(4):464–475. DOI: 10.1111/jdi.13401.

2. Bianchi L., Volpato S. Muscle dysfunction in type 2 diabetes: a major threat to patient’s mobility and independence. Acta Diabetologica. 2016;53:879–889. DOI: 10.1007/s00592-016-0880-y.

3. Stepanova O. I., Karkishchenko V. N., Baranova O. V. Semenov H. H., Beskova T. B., Galahova T. V., Onischenko N. A., Kasinskaya N. V. The mutant mice С57BL/KsJYLeprdb/+ as the genetic model of diabetes 2 type. Journal Biomed. 2009;1(2):28–40. (In Russ.)

4. Liu J., Lai F., Hou Y., Zheng R. Leptin signaling and leptin resistance. Medical Review. 2022;2(4):363–384. DOI: 10.1515/mr-2022-0017.

5. Sima A. A., Robertson D. M. Peripheral neuropathy in mutant diabetic mouse [C57BL/Ks (db/db)]. Acta Neuropathologica. 1978;41(2):85–89.

6. Sataranatarajan K., Ikeno Y., Bokov A., Feliers D., Yalamanchili H., Lee H. J., Mariappan M. M., Tabatabai-Mir H., Diaz V., Prasad S., Javors M. A., Ghosh Choudhury G., Hubbard G. B., Barnes J. L., Richardson A., Kasinath B. S. Rapamycin Increases Mortality in db/db Mice, a Mouse Model of Type 2 Diabetes. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2016;71(7):850–857. DOI: 10.1093/gerona/glv170.

7. Hummel K. P., Dickie M. M., Coleman D. L. Diabetes, a new mutation in the mouse. Science. 1966;153(3740):1127–1128. DOI: 10.1126/science.153.3740.1127.

8. Zhang J., Zhang Y., Yuan Y., Liu L., Zhao Y., Wang X. Gut Microbiota Alteration Is Associated With Cognitive Deficits in Genetically Diabetic (Db/db) Mice During Aging. Frontiers in Aging Neuroscience. 2022;13:815562. DOI: 10.3389/fnagi.2021.815562.

9. Brem H., Tomic-Canic M., Entero H., Hanflik A. M., Wang V. M., Fallon J. T., Ehrlich H. P. The synergism of age and db/db genotype impairs wound healing. Experimental Gerontology. 2007;42(6):523–531. DOI: 10.1016/j.exger.2006.11.018.

10. Okovity S. V., Raikhelson K. L., Volnukhin A. V., Kudlai D. A. Hepatoprotective properties of glycyrrhizic acid. Experimental and Clinical Gastroenterology. 2020;(12):96–108. (In Russ.) DOI: 10.31146/1682-8658-ecg-184-12-96-108.

11. Kao T.-C., Shyu M.-H., Yen G.-C. Neuroprotective effects of glycyrrhizic acid and 18β-glycyrrhetinic acid in PC12 cells via modulation of the PI3K/Akt pathway. Journal of Agricultural and Food Chemistry. 2009;57(2):754–761. DOI: 10.1021/jf802864k.

12. Qu L., Chen C., He W., Chen Y., Li Y., Wen Y., Zhou S., Jiang Y., Yang X., Zhang R., Shen L. Glycyrrhizic acid ameliorates LPS-induced acute lung injury by regulating autophagy through the PI3K/AKT/mTOR pathway. American Journal of Translational Research. 2019;11(4):2042–2055.

13. Ban J. Y., Park H. K., Kim S. K. Effect of glycyrrhizic acid on scopolamine-induced cognitive impairment in mice. International Neurourology Journal. 2020;24(1):S48–55. DOI: 10.5213/inj.2040154.077.

14. Ma X., Chen H., Cao L., Zhao S., Zhao C., Yin S., Hu H. 18β-glycyrrhetinic acid improves high-intensity exercise performance by promoting glucose-dependent energy production and inhibiting oxidative stress in mice. Phytotherapy Research. 2021;35(12):6932–6943. DOI: 10.1002/ptr.7310.

15. Prikhodko V. A., Matuzok T. M., Grishina A. Yu., Kovanskov V. E., Sysoev Yu. I., Titova M. V., Popova E. V., Nosov A. M., Ivkin D. Yu., Okovityi S. V. Use of an electrical stimulation-induced fatigue protocol to evaluate the myotropic effects of metabolic-active agents in db/db mice. Drug development & registration. 2025;14(1):332–348. (In Russ.) DOI: 10.33380/2305-2066-2025-14-1-1997.

16. Prihod’ko V. A., Matuzok T. M. Leptin resistance confers altered sensitivity to ipidacrine in db/db mice. In: Materials of the III International Scientific and Practical Conference "Modern Pharmacy: New Approaches in Education and Current Research". 2023. P. 231–236. (In Russ.)

17. Schulz A., Walther C., Morrison H., Bauer R. In vivo electrophysiological measurements on mouse sciatic nerves. Journal of Visualized Experiments. 2014;(86):51181. DOI: 10.3791/51181.

18. Morozov A. M., Sorokovikova T. V., Minakova Yu. E., Belyak M. A. Electroneuromyography: a modern view on the possibilities of application (literature review). Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH). 2022;12(3):107–116. (In Russ.) DOI: 10.20340/vmi-rvz.2022.3.CLIN.6

19. Verdú E., Ceballos D., Vilches J. J., Navarro X. Influence of aging on peripheral nerve function and regeneration. Journal of the Peripheral Nervous System. 200;5(4):191–208. DOI: 10.1111/j.1529-8027.2000.00026.x.

20. Mankowski R. T., Anton S. D., Aubertin-Leheudre M. The role of muscle mass, muscle quality, and body composition in risk for the metabolic syndrome and functional decline in older adults. Current Geriatrics Reports. 2015;4:221–228. DOI: 10.1007/s13670-015-0132-y.

21. Anand N. S., Chad D. Electrophysiology of Myopathy. In: Blum A. S., Rutkove S. B., editors. The Clinical Neurophysiology Primer. New Jersey: Humana Totowa; 2007. P. 325–351. DOI: 10.1007/978-1-59745-271-7_20.

22. Paganoni S., Amato A. Electrodiagnostic evaluation of myopathies. Physical Medicine and Rehabilitation Clinics of North America. 2013;24(1):193–207. DOI: 10.1016/j.pmr.2012.08.017.

23. Nazari S., Rameshrad M., Hosseinzadeh H. Toxicological effects of Glycyrrhiza glabra (licorice): a review. Phytotherapy research. 2017;31(11):1635–1650. DOI: 10.1002/ptr.5893.

24. Yoshino T., Shimada S., Homma M., Makino T., Mimura M., Watanabe K. Clinical Risk Factors of Licorice-Induced Pseudoaldosteronism Based on Glycyrrhizin-Metabolite Concentrations: A Narrative Review. Frontiers in Nutrition. 2021;8:719197. DOI: 10.3389/fnut.2021.719197.


Supplementary files

1. Графический абстракт
Subject
Type Other
View (1MB)    
Indexing metadata ▾

Review

For citations:


Matuzok T.M., Prikhodko V.A., Napalkova S.M., Buyuklinskaya O.V., Okovityi S.V. Effects of glycyrrhizinic acid on neuromotor function in leptin-resistant mice. Drug development & registration. (In Russ.) https://doi.org/10.33380/2305-2066-2025-14-3-2030

Views: 26


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)