Preview

Drug development & registration

Advanced search

Polymer carrier selection for creation of diosmin solid dispersion system by hot melt extrusion

https://doi.org/10.33380/2305-2066-2025-14-3-2128

Abstract

Introduction. The extremely unfavorable physical, chemical and functional properties of diosmin, a component of a number of popular phleboprotective drugs, cause an increased therapeutic dosage of the active pharmaceutical ingredient (API) in the dosage form and complicate the manufacturing process. In order to improve the characteristics of API, a technology of solid dispersion systems (SDS) creation by hot melt extrusion (HME) has been proposed. Particular importance in the context of current approach is attached to the selection of an effective polymer matrix.

Aim. The selection and justification of using a polymer carrier from the polyvinylpyrrolidone group for creating diosmin solid dispersions by hot melt extrusion.

Materials and methods. Object of study: diosmin (powder micronized substance, Chengdu Runde Pharmaceutical Co., Ltd., China). As candidates for the development of solid dispersions with a model ratio of API to carrier of 1 : 99, two related hydrophilic polymers were selected: a copolymer of polyvinylpyrrolidone with vinyl acetate in a ratio of 60 : 40 (PVPVA) – VIVAPHARM® PVP/VA 64 (JRS PHARMA GmbH & Co. KG, Germany), and polyvinylpyrrolidone brand Kollidon® K17 PF (BASF, USA). The thermal properties of the API and polymer carrier were characterized using synchronous thermal analysis. Diosmin SDS were obtained using a HAAKE™ MiniCTW twin-screw extruder (Thermo Fisher Scientific, Germany). The quantitative content of diosmin in the solid dispersions was determined by HPLC. To assess the effect of the extrusion process on the sample characteristics, the functional properties of API and milled SDS were compared. In particular, the thermal and structural characteristics were studied using differential scanning calorimetry and FTIR spectroscopy, respectively.

Results and discussion. Kollidon® K17 is not effective in binary diosmin solid dispersions due to the increased viscosity of the melt, the risk of forming a heterogeneous system, and the potential degradation of the samples' functional properties relative to the pure micronized API. Taking into account the specifics of the extrusion process, as well as the results of the thermal, structural, and functional characteristics analysis of SDS, it was concluded that copolymer of polyvinylpyrrolidone with vinyl acetate is the most effective. This polymer matrix enables more uniform dispersion and fusion with diosmin, along with a tendency towards possible amorphization of the API, and thus – the possibility of solubility properties improvement.

Conclusion. The utilization of a copolymer of polyvinylpyrrolidone with vinyl acetate improves the unfavorable characteristics of micronized diosmin, which will eventually eliminate deviations during the manufacturing process of solid dosage forms by reducing the risks of dust formation and mechanical losses, as well as ensuring uniform dosing.

About the Authors

A. A. Danilova
Saint-Petersburg State Chemical and Pharmaceutical University
Russian Federation

14A, Prof. Popova str., Saint-Petersburg, 197022



E. V. Vishnyakov
Saint-Petersburg State Chemical and Pharmaceutical University
Russian Federation

14A, Prof. Popova str., Saint-Petersburg, 197022



E. S. Surbeeva
Saint-Petersburg State Chemical and Pharmaceutical University
Russian Federation

14A, Prof. Popova str., Saint-Petersburg, 197022



K. A. Gusev
Saint-Petersburg State Chemical and Pharmaceutical University
Russian Federation

14A, Prof. Popova str., Saint-Petersburg, 197022



D. N. Maimistov
Saint-Petersburg State Chemical and Pharmaceutical University
Russian Federation

14A, Prof. Popova str., Saint-Petersburg, 197022



E. V. Flisyuk
Saint-Petersburg State Chemical and Pharmaceutical University
Russian Federation

14A, Prof. Popova str., Saint-Petersburg, 197022



References

1. Baylis R. A., Smith N. L., Klarin D., Fukaya E. Epidemiology and genetics of venous thromboembolism and chronic venous disease. Circulation research. 2021;128(12):1988–2002. DOI: 10.1161/CIRCRESAHA.121.318322.

2. Benn S., Moore Z., Patton D., O'Connor T., Nugent L., Harkin D., Avsar P. What is the prevalence of chronic venous disease among health care workers? A scoping review. Interntional Wound Journal. 2023;20(9):3821–3839. DOI: 10.1111/iwj.14222.

3. Ortega M. A., Fraile-Martínez O., García-Montero C., Álvarez-Mon M. A., Chaowen C., Ruiz-Grande F., Pekarek L., Monserrat J., Asúnsolo A., García-Honduvilla N., Álvarez-Mon M., Bujan J. Understanding chronic venous disease: a critical overview of its pathophysiology and medical management. Journal of Clinical Medicine. 2021;10(15):3239. DOI: 10.3390/jcm10153239.

4. De Maessener M. G., Kakkos S. K., Aherne T., Baekgaard N., Black S., Blomgren L., Giannoukas A., Gohel M., de Graaf R., Hamel-Desnos C., Jawien A., Jaworucka-Kaczorowska A., Lattimer C. R., Mosti G., Noppeney T., van Rijn M. J., Stansby G., Kolh P., Bastos Goncalves F., Chakfé N., Coscas R., de Borst G. J., Dias N. V., Hinchliffe R. J., Koncar I. B., Lindholt J. S., Trimarchi S., Tulamo R., Twine C. P., Vermassen F., Wanhainen A., Björck M., Labropoulos N., Lurie F., Mansilha A., Nyamekye I. K., Ramirez Ortega M., Ulloa J. H., Urbanek T., van Rij A. M., Vuylsteke M. E. Editor's Choice – European Society for Vascular Surgery (ESVS) 2022 Clinical Practice Guidelines on the management of chronic venous disease of the lower limbs. European Journal of Vascular and Endovascular Surgery. 2022;63(2):184–267. DOI: 10.1016/j.ejvs.2021.12.024.

5. Golovina V. I., Zolotukhin I. А. The Use of Diosmin Drugs in the Treatment of Chronic Venous Insufficiency. Medical practice. 2023;2:67–73. (In Russ.) DOI: 10.24412/2071-5315-2023-12881.

6. Gerges S. H., Wahdan S. A., Elsherbiny D. A., El-Demerdash E. Pharmacology of Diosmin, a Citrus Flavone Glycoside: An Updated Review. European Journal of Drug Metabolism and Pharmacokinetics. 2022;47:1–18. DOI: 10.1007/s13318-021-00731-y.

7. Bogachev V. Y., Boldin B. V., Komov K. V., Dzhenina O. V. Fixed-dose combinations in pharmacotherapy of chronic venous diseases. Ambulatory Surgery. 2024;21(2):44–51. (In Russ.) DOI:10.21518/akh2024-042.

8. Lurie F., Branisteanu D. E. Improving Chronic Venous Disease Management with Micronised Purified Flavonoid Fraction: New Evidence from Clinical Trials to Real Life. Clinical Drug Investigation. 2023;43(1):9–13. DOI: 10.1007/s40261-023-01261-y.

9. Danilova А. А., Gusev K. A., Maimistov D. N., Flisyuk E. V. Hot Melt Extrusion Technology as a Modern Strategy for Improving the Bioavailability of Flavonoids. Chemical and Pharmaceutical Journal. 2024;58(2):26–35. (In Russ.) DOI: 10.30906/0023-1134-2024-58-2-26-35.

10. Tong M., Wu X., Zhang S., Hua D., Li S., Yu X., Wang J., Zhang Z. Application of TPGS as an efflux inhibitor and a plasticizer in baicalein solid dispersion. European Journal of Pharmaceutical Sciences. 2022;168:106071. DOI: 10.1016/j.ejps.2021.106071.

11. Wdowiak K., Pietrzak R., Tykarska E., Cielecka-Piontek J. Hot-Melt Extrusion as an Effective Technique for Obtaining an Amorphous System of Curcumin and Piperine with Improved Properties Essential for Their Better Biological Activities. Molecules. 2023;28(9):3848. DOI: 10.3390/molecules28093848.

12. Danilova A. A., Gusev K. A., Arkhipova N. O., Danilov L. G., Vishnyakov E. V., Maimistov D. N., Flisyuk E. V. Assessment of polyvinylpyrrolidone vinyl acetate effect on quercetin properties in binary solid dispersion prepared by hot melt extrussion. Drug development & registration. 2025;14(1):127–137. (In Russ.) DOI: 10.33380/2305-2066-2025-14-1-1935.

13. LaFountaine J. S., Prasad L. K., Brough C., Miller D. A., McGinity J. W., Williams R. O. Thermal Processing of PVP- and HPMC-Based Amorphous Solid Dispersions. AAPS PharmSciTech. 2016;17:120–132. DOI: 10.1208/s12249-015-0417-7.

14. Gusev K. A., Aliev A. R., Generalova Yu. E., Aksenova N. A., Rechkalov G. V., Maimistov D. N., Alekseeva G. M., Flisyuk E. V. Composition and Technology Development for Obtaining Amorphous Solid Dispersion of Ebastine by Hot Melt Extrusion to Increase Dissolution Rate. Drug development & registration. 2023;12(4):126–135. (In Russ.) DOI: 10.33380/2305-2066-2023-12-4-1577.

15. Hemalatha G., Sreedevi A., Sruthi K. S., Swetha P. Development and optimization of a simple, robust RP-HPLC technique for analysis of diosmin and hesperidin using quality by design. Journal of Applied Pharmaceutical Science. 2024;14(3):95–101. DOI: 10.7324/JAPS.2024.162037.

16. Mathers A., Pechar M., Hassouna F., Fulem M. API solubility in semi-crystalline polymer: Kinetic and thermodynamic phase behavior of PVA-based solid dispersions. International Journal of Pharmaceutics. 2022;623:121855. DOI: 10.1016/j.ijpharm.2022.121855.

17. Bühler V. Polyvinylpyrrolidone Excipients for Pharmaceuticals: Povidone, Crospovidone and Copovidone. Berlin: Springer; 2005. 254 c.

18. Browne E., Worku Z. A., Healy A. M. Physicochemical Properties of Poly-Vinyl Polymers and Their Influence on Ketoprofen Amorphous Solid Dispersion Performance: A Polymer Selection Case Study. Pharmaceutics. 2020;12(5):433. DOI: 10.3390/pharmaceutics12050433.

19. Kapourani A., Vardaka E., Katopodis K., Kachrimanis K., Barmpalexis P. Crystallization tendency of APIs possessing different thermal and glass related properties in amorphous solid dispersions. International Journal of Pharmaceutics. 2020;579:119149. DOI: 10.1016/j.ijpharm.2020.119149.

20. Kanaze F. I., Kokkalou E., Niopas I., Georgarakis M., Stergiou A., Bikiaris D. Thermal analysis study of flavonoid solid dispersions having enhanced solubility. Journal of thermal analysis and calorimetry. 2006;83(2):283–290. DOI: 10.1007/s10973-005-6989-9.

21. Hess F., Kipping T., Weitschies W., Krause J. Understanding the Interaction of Thermal, Rheological, and Mechanical Parameters Critical for the Processability of Polyvinyl Alcohol-Based Systems during Hot Melt Extrusion. Pharmaceutics. 2024;16:472. DOI: 10.3390/pharmaceutics16040472.


Supplementary files

1. Графический абстракт
Subject
Type Other
View (1MB)    
Indexing metadata ▾

Review

For citations:


Danilova A.A., Vishnyakov E.V., Surbeeva E.S., Gusev K.A., Maimistov D.N., Flisyuk E.V. Polymer carrier selection for creation of diosmin solid dispersion system by hot melt extrusion. Drug development & registration. (In Russ.) https://doi.org/10.33380/2305-2066-2025-14-3-2128

Views: 83


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)