Preview

Drug development & registration

Advanced search

Escherichia coli cell bank: development, characterization, and transfer for biopharmaceutical medicines production (review)

https://doi.org/10.33380/2305-2066-2025-14-3-2064

Abstract

Introduction. Biological medicines produced using recombinant DNA technology play an important role in the international pharmaceutical market. Currently, bacterial and mammalian expression systems are widely used to produce recombinant proteins, monoclonal antibodies, and vaccines. To maintain the quality and stability of inoculation, cell banks are generated.

Text. The general recommendations for cell bank development are outlined in the ICH Q5 guidelines. In the Russian Federation, similar requirements are specified in Decision No. 89 of the Council of the Eurasian Economic Commission "On approval of the Rules for assessments of biological medicines in the EAEU". Based on these requirements, one- or two-level cell banks should be established. Initially, a Master cell bank (MCB) is generated from a well-characterized single-cell bacterial colony according to high-quality standards. Subsequently, a Working cell bank (WCB) is created from one or several well-characterized MCB cryovials. As a result, the number of parameters required for WCB characterization can be reduced. The identity, purity, and stability of the cell bank should be determined. Requirements for cell bank characterization are detailed in official guidelines. An identity test is used to confirm the cell line or strain identification, which is a critical step to prevent cross-contamination and ensure the correct cell line in manufacturing processes. The absence of bacterial, fungal, or other types of contamination is demonstrated through purity testing. The sterility test is a key component, ensuring that a pure cell is used. The stability test demonstrates the genetic stability of the cells, including the preservation of genetic characteristics and the monitoring of harmful mutations during cultivation processes. Comprehensive data on the cell bank history, development, and characterization should be provided during its transfer.

Conclusion. This research presents the general concept of microbial cell bank development, characterization, and transfer based on bacterial expression systems.

About the Authors

E. A. Buslaeva
Closed Joint Stock Company "Pharm-Holding"
Russian Federation

34A, Svyazi str., Strelna settlement, Saint-Petersburg, 198515



S. А. Аlikina
Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics
Russian Federation

49A, Kronverksky prospect, Saint-Petersburg, 197101



Z. R. Khasanshina
Closed Joint Stock Company "Pharm-Holding"; Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics
Russian Federation

34A, Svyazi str., Strelna settlement, Saint-Petersburg, 198515
49A, Kronverksky prospect, Saint-Petersburg, 197101



L. М. Kriazhevskikh
Closed Joint Stock Company "Pharm-Holding"
Russian Federation

34A, Svyazi str., Strelna settlement, Saint-Petersburg, 198515



А. N. Kucherenko
Closed Joint Stock Company "Pharm-Holding"
Russian Federation

34A, Svyazi str., Strelna settlement, Saint-Petersburg, 198515



R. V. Drai
Closed Joint Stock Company "Pharm-Holding"
Russian Federation

34A, Svyazi str., Strelna settlement, Saint-Petersburg, 198515



References

1. Walsh G. Biopharmaceutical benchmarks 2018. Nature Biotechnology. 2018;36:1136–1145. DOI: 10.1038/nbt.4305.

2. McElwain L., Phair K., Kealey C., Brady D. Current trends in biopharmaceuticals production in Escherichia coli. Biotechnology Letters. 2022;44(8):917–931. DOI: 10.1007/s10529-022-03276-5.

3. İncir İ., Kaplan Ö. Escherichia coli in the production of biopharmaceuticals. Biotechnology and Applied Biochemistry. 2025;72(2):528–541. DOI: 10.1002/bab.2664.

4. Al-Rubeai M., editor. Cell Line Development. Cell Engineering. Dordrecht: Springer; 2009. 253 p.

5. Johnson I. S. Human insulin from recombinant DNA technology. Science. 1983;219(4585):632–637. DOI: 10.1126/science.6337396.

6. Sobolewska-Ruta A., Zaleski P. Cell Banks Preparation In Biopharmaceuticals Production. Postępy Mikrobiologii – Advancements of Microbiology. 2019;58(1):87–100. DOI: 10.21307/pm-2019.58.1.087.

7. Walsh G., Walsh E. Biopharmaceutical benchmarks 2022. Nature Biotechnology. 2022;40(12):1722–1760. DOI: 10.1038/s41587-022-01582-x.

8. Lagassé H. A. D., Alexaki A., Simhadri V. L., Katagiri N. H., Jankowski W., Sauna Z. E., Kimchi-Sarfaty C. Recent advances in (therapeutic protein) drug development. F1000Research. 2017;6:113. DOI: 10.12688/f1000research.9970.1.

9. Li F., Vijayasankaran N., Shen A. (Y.), Kiss R., Amanullah A. Cell culture processes for monoclonal antibody production. MAbs. 2010;2(5):466–479. DOI: 10.4161/mabs.2.5.12720.

10. Rosano G. L., Ceccarelli E. A. Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology. 2014;5:172. DOI: 10.3389/fmicb.2014.00172.

11. Tripathi N. K., Shrivastava A. Recent developments in bioprocessing of recombinant proteins: expression hosts and process development. Fronters in Bioengineering and Biotechnology. 2019;7:420. DOI: 10.3389/fbioe.2019.00420.

12. Niazi S., Magoola M. Advances in Escherichia coli-based therapeutic protein expression: Mammalian conversion, continuous manufacturing, and cell-free production. Biologics. 2023;3(4):380–401. DOI: 10.3390/biologics3040021.

13. Geigert J., editor. The Challenge of CMC Regulatory Compliance for Biopharmaceuticals. Switzerland: Springer Cham; 2019. 426 p.

14. Cabrera C. M., Cobo F., Nieto A., Cortés J. L., Montes R. M., Catalina P., Concha A. Identity tests: determination of cell line cross-contamination. Cytotechnology. 2006;51:45–50. DOI: 10.1007/s10616-006-9013-8.

15. Schmeer M., Buchholz T., Schleef M. Plasmid DNA manufacturing for indirect and direct clinical applications. Human Gene Therapy. 2017;28(10):856–861. DOI: 10.1089/hum.2017.159.

16. Dashnau J. L., Xue Q., Nelson M., Law E., Cao L., Hei D. A risk-based approach for cell line development, manufacturing and characterization of genetically engineered, induced pluripotent stem cell-derived allogeneic cell therapies. Cytotherapy. 2023;25(1):1–13. DOI: 10.1016/j.jcyt.2022.08.001.

17. Zhu M. M., Mollet M., Hubert R. S., Kyung Y. S., Zhang G. G.Industrial Production of Therapeutic Proteins: Cell Lines, Cell Culture, and Purification. Handbook of Industrial Chemistry and Biotechnology. 2017;3:1639–1669. DOI: 10.1007/978-3-319-52287-6_29.

18. Byer H., Wang W., Mogilyanskiy L. Mastering Cell Bank Production. Biopharm International 2015;8:20–24.

19. Matanguihan C., Wu P. Upstream continuous processing: recent advances in production of biopharmaceuticals and challenges in manufacturing. Current Opinion in Biotechnology. 2022;78:102828. DOI: 10.1016/j.copbio.2022.102828.

20. Menendez A. T., Ritter N., Zmuda J., Jani D., Goyal J.Recommendations for Cell Banks Used in GXP Assays. BioProcess International. 2012;10(1):27–40.

21. Wrigley J. D., McCall E. J., Bannaghan C. L., Liggins L., Kendrick C., Griffen A., Hicks R., Fröderberg-Roth L. Cell Banking for Pharmaceutical Research. Drug Discovery Today. 2014;19(10):1518–1529. DOI: 10.1016/j.drudis.2014.05.006.

22. Simonin H., Bergaoui I. M., Perrier-Cornet J. M., Gervais P. Cryopreservation of Escherichia coli K12TG1: protection from the damaging effects of supercooling by freezing. Cryobiology. 2015;70(2):115–121. DOI: 10.1016/j.cryobiol.2014.12.006.

23. Whaley D., Damyar K., Witek R. P., Mendoza A., Alexander M., Lakey J. R. T. Cryopreservation: an overview of principles and cell-specific considerations. Cell Transplantation. 2021;30:0963689721999617. DOI: 10.1177/0963689721999617.

24. Bolhuis H., Grego M. Cryopreservation and recovery of a complex hypersaline microbial mat community. Cryobiology. 2024;114:104859. DOI: 10.1016/j.cryobiol.2024.104859.

25. Bhattacharjee K., Chrungoo N., Joshi S. R. Cryopreservation design for bacterial cell: A non-conventional gizmatic approach. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2021;91:811– 820. DOI: 10.1007/s40011-021-01266-7.

26. Weiskirchen S., Monteiro A. M., Borojevic R., Weiskirchen R. Unlocking potential: A comprehensive overview of cell culture banks and their impact on biomedical research. Cells. 2024;13(22):1861. DOI: 10.3390/cells13221861.

27. Maffei E., Shaidullina A., Burkolter M., Heyer Y., Estermann F., Druelle V., Suaer P., Willi L., Michaelis S., Hilbi H., Thaler D. S., Harms A. Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection. PLoS Biology. 2021;19(11):e3001424. DOI: 10.1371/journal.pbio.3001424.

28. Tóth I., Bagyinszky E., Sváb D. Multiplex polymerase chain reaction typing scheme based on Escherichia coli O157: H7 Sakai prophage (Sp)-associated genes. International Journal of Infectious Diseases. 2022;120:68–76. DOI: 10.1016/j.ijid.2022.04.015.

29. Sofer G., Zabriskie D., editors. Process Validation in Manufacturing of Biopharmaceuticals. Boca Raton: CRC Press; 2000. 402 p.

30. Van der Burg D., Josefsson L., Emmer Å., Sänger – van de Griend C. E. Recent capillary electrophoresis applications for upstream and downstream biopharmaceutical process monitoring. TrAC Trends in Analytical Chemistry. 2023;160:116975. DOI: 10.1016/j.trac.2023.116975.

31. Lozano Terol G., Gallego-Jara J., Sola Martínez R. A., Martínez Vivancos A., Cánovas Diaz M., de Diego Puente T. Impact of the expression system on recombinant protein production in Escherichia coli BL21. Frontiers in Microbiology. 2021;12:682001. DOI: 10.3389/fmicb.2021.682001.

32. Allen J. R., Torres-Acosta M. A., Mohan N., Lye G. J., Ward J. M. Segregationally stabilised plasmids improve production of commodity chemicals in glucose-limited continuous fermentation. Microbial Cell Factories. 2022;21(1):229. DOI: 10.1186/s12934-022-01958-3.

33. De Marco A. Recent advances in recombinant production of soluble proteins in E. coli. Microbial Cell Factories. 2025;24(1):21. DOI: 10.1186/s12934-025-02646-8.

34. Jiang R., Yuan S., Zhou Y., Wei Y., Li F., Wang M., Chen B., Yu H. Strategies to overcome the challenges of low or no expression of heterologous proteins in Escherichia coli. Biotechnology Advances. 2024;75:108417. DOI: 10.1016/j.biotechadv.2024.108417.

35. Schmeer M., Schleef M., Shankear R., Kobelt D., Walther W. Capillary Gel Electrophoresis (CGE) for quality control of plasmid DNA in gene therapy: quality control of 20 years stored GMP-grade plasmid DNA. Methods in Molecular Biology. 2022;2521:317–328. DOI: 10.1007/978-1-0716-2441-8_17.

36. Arredondo-Alonso S., Pöntinen A. K., Gama J. A., Gladstone R. A., Harms K., Tonkin-Hill G., Thorpe H. A., Simonsen G. S., Samuelsen Ø., Johnsen P. J., Corander J. Plasmid-driven strategies for clone success in Escherichia coli. Nature Communications. 2025;16(1):2921. DOI: 10.1038/s41467-025-57940-1.

37. Liao Y.-C., Saengsawang B., Chen J.-W., Zhuo X.-Z., Li S.-Y. Construction of an antibiotic-free Vector and its application in the Metabolic Engineering of Escherichia Coli for Polyhydroxybutyrate Production. Frontiers in Bioengineering and Biotechnology. 2022;10:837944. DOI: 10.3389/fbioe.2022.837944.

38. Michel A., Neville D. Developing an understanding of the analytical landscape for testing complex biological raw materials in advanced therapy medicinal products: A CRO perspective. Cell Gene Therapy Insights. 2021;7(2):317–326. DOI: 10.18609/cgti.2021.056.


Supplementary files

1. Graphic abstract
Subject
Type Исследовательские инструменты
View (1MB)    
Indexing metadata ▾

Review

For citations:


Buslaeva E.A., Аlikina S.А., Khasanshina Z.R., Kriazhevskikh L.М., Kucherenko А.N., Drai R.V. Escherichia coli cell bank: development, characterization, and transfer for biopharmaceutical medicines production (review). Drug development & registration. (In Russ.) https://doi.org/10.33380/2305-2066-2025-14-3-2064

Views: 145


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)