Preview

Drug development & registration

Advanced search

Efficacy of exosomes in a chronic skin lesion model in vivo

https://doi.org/10.33380/2305-2066-2025-14-3-2123

Abstract

Introduction. Chronic skin ulcers, including radiation-induced ones, are associated with impaired regeneration, chronic inflammation and a high risk of complications, which requires new approaches to treatment due to the low efficiency of traditional methods. Modern methods of regenerative medicine, such as application of biopolymer coatings and exosomal drugs, promote tissue restoration by improving the microenvironment, stimulating cellular activity and modulating inflammation.

Aim. To develop a model of chronic radiation-induced skin injury and assess the therapeutic efficacy of monotherapy with medical device SPHERO®gel, exosome therapy (manufactured by New Medicine Stem Cell Clinic), and their combination in laboratory animals.

Materials and methods. The study involved 48 male Wistar rats subjected to fractionated X-ray irradiation (5 × 10 Gy), mechanical skin injury, and persistent inflammation induced by lipopolysaccharide (LPS) injection. Animals were randomized into four groups: control, SPHERO®gel, exosomes (manufactured by New Medicine Stem Cell Clinic), and combined treatment. Therapy was applied for 28 days. Wound healing efficacy was evaluated using ulcer area morphometry (ImageJ) and histological examination.

Results and discussion. Both SPHERO®gel and exosome (New Medicine Stem Cell Clinic) therapy significantly enhanced tissue repair, reduced fibrosis and inflammation. The combined therapy resulted in complete epithelialization in 75 % of animals, normalized angiogenesis, and restored dermal architecture.

Conclusion. The combination of SPHERO®gel and exosomes (manufactured by New Medicine Stem Cell Clinic) demonstrates a synergistic effect in the treatment of chronic radiation-induced ulcers and holds promise for clinical application in regenerative and restorative medicine.

About the Authors

I. I. Glazko
Federal Medical Biophysical Center named after A. I. Burnazyan of Federal Medical Biological Agency of Russia
Russian Federation

23, Marshala Novikova str., Moscow, 123098



E. A. Dubova
Federal Medical Biophysical Center named after A. I. Burnazyan of Federal Medical Biological Agency of Russia
Russian Federation

23, Marshala Novikova str., Moscow, 123098



E. I. Balakin
Federal Medical Biophysical Center named after A. I. Burnazyan of Federal Medical Biological Agency of Russia
Russian Federation

23, Marshala Novikova str., Moscow, 123098



O. V. Rukodayny
Institute of Medicine, RUDN University
Russian Federation

6, Miklukho-Maklaya str., Moscow, 117198



V. I. Pustovoit
Federal Medical Biophysical Center named after A. I. Burnazyan of Federal Medical Biological Agency of Russia
Russian Federation

23, Marshala Novikova str., Moscow, 123098



References

1. Yang X., Ren H., Guo X., Hu C., Fu J. Radiation-induced skin injury: pathogenesis, treatment, and management. Aging. 2020;12(22):23379–23393. DOI: 10.18632/aging.103932.

2. Barker H. E., Paget J. T. E., Khan A. A., Harrington K. J. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nature Reviews. Cancer. 2015;15(7):409–425. DOI: 10.1038/nrc3958.

3. Kolimi P., Narala S., Nyavanandi D., Youssef A. A. A., Dudhipala N. Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells. 2022;11(15):2439. DOI: 10.3390/cells11152439.

4. Machado P., Ribeiro F. N., Wroblevski Giublin F. C., Gerzvolf Mieres N., Stumpf Tonin F., Pontarolo R., Marcondes Sari M. H., Edison Luna Lazo R., Mota Ferreira L. Next-Generation Wound Care: A Scoping Review on Probiotic, Prebiotic, Synbiotic, and Postbiotic Cutaneous Formulations. Pharmaceuticals. 2025;18(5):704. DOI: 10.3390/ph18050704.

5. Yarnold J., Vozenin Brotons M.-C. Pathogenetic mechanisms in radiation fibrosis. Radiotherapy and Oncology. 2010;97(1):149–161. DOI: 10.1016/j.radonc.2010.09.002.

6. Gu Q., Wang D., Cui C., Gao Y., Xia G., Cui X. Effects of radiation on wound healing. Journal of Environmental Pathology, Toxicology and Oncology. 1998;17(2):117–123.

7. Park S. W., Shin J., Jeong B. K., Byun S., Lee K. S., Choi J. The Effects of Extracorporeal Shock Wave Therapy on Cutaneous Radiation Injury in a Mouse Model. Plastic & Reconstructive Surgery. 2025;155(5):813–825. DOI: 10.1097/PRS.0000000000011782.

8. Nie S., Ren C., Liang X., Cai H., Sun H., Liu F., Ji K., Wang Y., Liu Q. Supramolecular Hydrogel-Wrapped Gingival Mesenchymal Stem Cells in Cutaneous Radiation Injury. Cells. 2022;11(19):3089. DOI: 10.3390/cells11193089.

9. Sen C. K., Gordillo G. M., Roy S., Kirsner R., Lambert L., Hunt T. K., Gottrup F., Gurtner G. C., Longaker M. T. Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair and Regeneration. 2009;17(6):763–771. DOI: 10.1111/j.1524-475X.2009.00543.x.

10. Boateng J. S., Matthews K. H., Stevens H. N. E., Eccleston G. M. Wound Healing Dressings and Drug Delivery Systems: A Review. Journal of Pharmaceutical Sciences. 2008;97(8):2892–2923. DOI: 10.1002/jps.21210.

11. Arabpour Z., Abedi F., Salehi M., Baharnoori S. M., Soleimani M., Djalilian A. R. Hydrogel-Based Skin Regeneration. International Journal of Molecular Sciences. 2024;25(4):1982. DOI: 10.3390/ijms25041982.

12. Qi L., Zhang C., Wang B., Yin J., Yan S. Progress in Hydrogels for Skin Wound Repair. Macromolecular Bioscience. 2022;22(7):2100475. DOI: 10.1002/mabi.202100475.

13. Phinney D. G., Pittenger M. F. Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells. 2017;35(4):851–858. DOI: 10.1002/stem.2575.

14. Zhang B., Wang M., Gong A., Zhang X., Wu X., Zhu Y., Shi H., Wu L., Zhu W., Qian H., Xu W. HucMSC-Exosome Mediated-Wnt4 Signaling Is Required for Cutaneous Wound Healing. Stem Cells. 2015;33(7):2158–2168. DOI: 10.1002/stem.1771.

15. Hu L., Wang J., Zhou X., Xiong Z., Zhao J., Yu R., Huang F., Zhang H., Chen L. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Scientific Reports. 2016;6:32993. DOI: 10.1038/srep32993.

16. Shabbir A., Cox A., Rodriguez-Menocal L., Salgado M., Van Badiavas E. Mesenchymal Stem Cell Exosomes Induce Proliferation and Migration of Normal and Chronic Wound Fibroblasts, and Enhance Angiogenesis In Vitro. Stem Cells and Development. 2015;24(14):1635–1647. DOI: 10.1089/scd.2014.0316.

17. Juvkam I. S., Zlygosteva O., Arous D., Galtung H. K., Malinen E., Søland T. M., Edin N. J. A preclinical model to investigate normal tissue damage following fractionated radiotherapy to the head and neck. Journal of Radiation Research. 2023;64(1):44–52. DOI: 10.1093/jrr/rrac066.

18. Kalluri R., LeBleu V. S. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. DOI: 10.1126/science.aau6977.

19. Esmaeilzadeh A., Yeganeh P. M., Nazari M., Esmaeilzadeh K. Platelet-Derived Extracellular Vesicles: A New-Generation Nanostructured Tool for Chronic Wound Healing. Nanomedicine. 2024;19(10):915–941. DOI: 10.2217/nnm-2023-0344.

20. Diegelmann R. F. Wound healing: an overview of acute, fibrotic and delayed healing. Frontiers in Bioscience. 2004;9(1):283–289. DOI: 10.2741/1184.

21. Lee J. H., Won Y. J., Kim H., Choi M., Lee E., Ryoou B., Lee S.-G., Cho B. S. Adipose Tissue-Derived Mesenchymal Stem Cell-Derived Exosomes Promote Wound Healing and Tissue Regeneration. International Journal of Molecular Sciences. 2023;24(13):10434. DOI: 10.3390/ijms241310434.

22. Li Y., Zhu Z., Li S., Xie X., Qin L., Zhang Q., Yang Y., Wang T., Zhang Y. Exosomes: compositions, biogenesis, and mechanisms in diabetic wound healing. Journal of Nanobiotechnology. 2024;22(1):398. DOI: 10.1186/s12951-024-02684-1.

23. Li B., Song S., Zhou Y., Chen X., Zhang Z., Liu X., Zhang R. Biopolymer hydrogels in biomedicine: Bridging chemistry, biology, and clinical translation. International Journal of Biological Macromolecules. 2025;318:145048. DOI: 10.1016/j.ijbiomac.2025.145048.

24. Meng H., Su J., Shen Q., Hu W., Li P., Guo K., Liu X., Ma K., Zhong W., Chen S., Ma L., Hao Y., Chen J., Jiang Y., Li L., Fu X., Zhang C. A Smart MMP-9-responsive Hydrogel Releasing M2 Macrophage-derived Exosomes for Diabetic Wound Healing. Advanced Healthcare Materials. 2025;14(10):2404966. DOI: 10.1002/adhm.202404966.

25. Zhou Y., Zhang X.-L., Lu S.-T., Zhang N.-Y., Zhang H.-J., Zhang J., Zhang J. Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound healing and regeneration. Stem Cell Research & Therapy. 2022;13(1):407. DOI: 10.1186/s13287-022-02980-3.


Supplementary files

1. Графический абстракт
Subject
Type Other
View (886KB)    
Indexing metadata ▾

Review

For citations:


Glazko I.I., Dubova E.A., Balakin E.I., Rukodayny O.V., Pustovoit V.I. Efficacy of exosomes in a chronic skin lesion model in vivo. Drug development & registration. (In Russ.) https://doi.org/10.33380/2305-2066-2025-14-3-2123

Views: 24


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)