Preview

Drug development & registration

Advanced search

Study of the issues of maintaining stability of poloxamer-based systems during autoclaving

https://doi.org/10.33380/2305-2066-2025-14-4-2077

Abstract

Introduction. Parenteral and ophthalmic in situ systems must be sterile. The selection of sterilization method is a key step in the development of sterile stimuli-sensitive systems, as an inappropriate method can lead to the degradation of the gel-forming polymer and the API, resulting in a loss of activity. Unfortunately, the stability of poloxamer-based thermosensitive systems during sterilization, as well as methods for their stabilization using protective agents, remains insufficiently studied.

Aim. The aim of the study was to investigate the stability of poloxamer-based systems during autoclaving and to develop methods for protecting them from the adverse effects of sterilization.

Materials and methods. Poloxamers used in the experiment included Kolliphor® P 407, Kolliphor® P 188, Kolliphor® P 338, and Kollisolv® P 124 (BASF, USA), as well as Emuxol-268 and Proxanol-168, provided by JSC "NIOPIK" (Russia). Disodium salt of ethylenediaminetetraacetic acid (EDTA) (LLC PCF "KhimAvangard", Russia) and xylitol ("Sladkiy Mir" LTD, Russia) were selected as protective agents. The samples were autoclaved at 121 °C for 20 minutes. Stability was evaluated based on the following parameters: appearance, pH, kinematic viscosity, and sol-gel transition temperature.

Results and discussion. Autoclaving of various combinations of poloxamers had a negligible effect on the stability parameters of the formulations. The addition of EDTA at high concentrations led to an increase in viscosity, as well as a decrease in pH and gel-forming ability of the formulations. After sterilization, gel precipitation was observed in all samples containing EDTA, but the original appearance of the formulations was restored within 5 days. The other parameters remained stable after autoclaving. The addition of xylitol had a negligible effect on the initial properties of the poloxamers, and the formulations retained stability after sterilization.

Conclusion. The results of the experiments showed that autoclaving is a suitable method for sterilization of systems based on various combinations of poloxamers. The addition of EDTA, especially at high concentrations, should be avoided due to its negative impact on the key parameters of in situ systems and the risk of gel precipitation during autoclaving. Xylitol does not affect the stability of poloxamers during sterilization. However, further research is needed to evaluate the potential of EDTA and xylitol as protective agents for the stabilization of other stimuli-sensitive systems.

About the Authors

E. O. Bakhrushina
I. M. Sechenov First MSMU of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

8/2, Trubetskaya str., Mosсow, 119991



A. M. Afonina
I. M. Sechenov First MSMU of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

8/2, Trubetskaya str., Mosсow, 119991



V. S. Pyzhov
I. M. Sechenov First MSMU of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

8/2, Trubetskaya str., Mosсow, 119991



I. B. Mikhel
I. M. Sechenov First MSMU of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

8/2, Trubetskaya str., Mosсow, 119991



References

1. Kolawole O. M., Cook M. T. In situ gelling drug delivery systems for topical drug delivery. European Journal of Pharmaceutics and Biopharmaceutics. 2023;184:36–49. DOI: 10.1016/j.ejpb.2023.01.007.

2. Gupta C., Juyal V., Nagaich U. Formulation, optimization, and evaluation of in-situ gel of moxifloxacin hydrochloride for ophthalmic drug delivery. International Journal of Applied Pharmaceutics. 2019;11(4):147–158. DOI: 10.22159/ijap.2019v11i4.30388.

3. Bakhrushina E. O., Mikhel I. B., Buraya L. M., Moiseev E. D., Zubareva I. M., Belyatskaya A. V., Evzikov G. Y., Bondarenko A. P., Krasnyuk Jr. I. I., Krasnyuk I. I. Implantation of in situ gelling systems for the delivery of chemotherapeutic agents. Gels. 2024;10(1):44. DOI: 10.3390/gels10010044.

4. Kumbhar A. B., Rakde A. K., Chaudhari P. D. In situ gel forming injectable drug delivery system. International Journal of Pharmarmaceutical Sciences and Research. 2013;4(2):597–609. DOI: 10.13040/IJPSR.0975-8232.4(2).597-09.

5. Bakhrushina  E. O., Demina N. B., Shumkova M. M., Rodyuk P. S., Shulikina D. S., Krasnyuk I. I. In situ intranasal delivery systems: application prospects and main pharmaceutical aspects of development. Drug development & registration. 2021;10(4):54–63. (In Russ.) DOI: 10.33380/2305-2066-2021-10-4-54-63.

6. Shaaban O. M., Fetih G. N., Abdellah N. H., Ismail S., Ibrahim M. A., Ibrahim E. A. Pilot randomized trial for treatment of bacterial vaginosis using in situ forming metronidazole vaginal gel. Journal of Obstetrics and Gynaecology Research. 2011;37(7):874–881. DOI: 10.1111/j.1447-0756.2010.01457.x.

7. Ruan H., Yu Y., Guo X., Jiang Q., Luo Y. The possibility of healing alveolar bone defects with simvastatin thermosensitive gel: in vitro/in vivo evaluation. Drug Design, Development and Therapy. 2018;12:1997–2003. DOI: 10.2147/DDDT.S163986.

8. Fakhari A., Subramony J. A. Engineered in-situ depot-forming hydrogels for intratumoral drug delivery. Journal of Controlled Release. 2015;220:465–475. DOI: 10.1016/j.jconrel.2015.11.014.

9. Venkatesh M. P., Kumar T. P., Pai D. R. Targeted drug delivery of methotrexate in situ gels for the treatment of rheumatoid arthritis. Saudi Pharmaceutical Journal. 2020;28(12):1548–1557. DOI: 10.1016/j.jsps.2020.10.003.

10. Asasutjarit R., Thanasanchokpibull S., Fuongfuchat A., Veeranondha S. Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels. International Journal of Pharmaceutics. 2011;411(1–2):128–135. DOI: 10.1016/j.ijpharm.2011.03.054.

11. Soliman K. A., Ullah K., Shah A., Jones D. S., Singh T. R. R. Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications. Drug Discovery Today. 2019;24(8):1575–1586. DOI: 10.1016/j.drudis.2019.05.036.

12. Gupta H., Jain S., Mathur R., Mishra P., Mishra A. K., Velpandian T. Sustained ocular drug delivery from a temperature and pH triggered novel in situ gel system. Drug Delivery. 2007;14:507–515. DOI: 10.1080/10717540701606426.

13. Memisoglu-Bilensoy E., Hincal A. A. Sterile, injectable cyclodextrin nanoparticles: effects of gamma irradiation and autoclaving. International Journal of Pharmaceutics. 2006;311(1–2):203–208. DOI: 10.1016/j.ijpharm.2005.12.013.

14. Burak J., Grela K. P., Pluta J., Karolewicz B., Marciniak D. M. Impact of sterilisation conditions on the rheological properties of thermoresponsive pluronic F-127-based gels for the ophthalmic use. Acta Poloniae Pharmaceutica – Drug Research. 2018;75(2):471–481. DOI: 10.32383/appdr/146102.

15. Ferreira I., Marques A. C., Cardoso Costa P., Amaral M. H. Effects of steam sterilization on the properties of stimuli-responsive polymer-based hydrogels. Gels. 2023;9(5):385. DOI: 10.3390/gels9050385.

16. Beard M. C., Cobb L. H., Grant C. S., Varadarajan A., Henry T., Swanson E. A., Kundu S., Priddy L. B. Autoclaving of Poloxamer 407 hydrogel and its use as a drug delivery vehicle. Journal of Biomedical Materials Research Part B, Applied Biomaterials. 2021;109(3):338–347. DOI: 10.1002/jbm.b.34703.

17. Basumallick L., Ji J. A., Naber N., Wang Y. J. The fate of free radicals in a cellulose based hydrogel: detection by electron paramagnetic resonance spectroscopy. Journal of Pharmaceutical Sciences. 2009;98:2464–2471. DOI: 10.1002/jps.21632.

18. Ji J. A., Ingham E., Wang J. Y. Effect of EDTA and methionine on preventing loss of viscosity of cellulose-based topical gel. AAPS PharmSciTech. 2009;10(2):678–683. DOI: 10.1208/s12249-009-9258-6.

19. Liu F. F., Ji L., Zhang L., Dong X. Y., Sun Y. Molecular basis for polyol-induced protein stability revealed by molecular dynamics simulations. The Journal of chemical physics. 2010;132(22):225103. DOI: 10.1063/1.3453713.

20. Kumar V., Singh S. N., Kalonia D. S. Mechanism of stabilization of proteins by poly-hydroxy co-solvents: concepts and implications in formulation development. American Pharmaceutical Review. 2012;15(3):05–10.

21. Jarry C., Leroux J. C., Haeck J., Chaput C. Irradiating or autoclaving chitosan/polyol solutions: effect on thermogelling chitosan-β-glycerophosphate systems. Chemical & pharmaceutical bulletin. 2002;50(10):1335–1340. DOI: 10.1248/cpb.50.1335.

22. Bakhrushina E. O., Afonina A. M., Mikhel I. B., Demina N. B., Plakhotnaya O. N., Belyatskaya A. V., Krasnyuk I. I., Jr., Krasnyuk I. I. Role of sterilization on in situ gel-forming polymer stability. Polymers. 2024;16(20):2943. DOI: 10.3390/polym16202943.

23. Zarrintaj P., Jouyandeh M., Ganjali M. R., Hadavand B. S., Mozafari M., Sheiko S. S., Vatankhah-Varnoosfaderani M., Gutiérrez T. J., Saeb M. R. Thermo-sensitive polymers in medicine: A review. European Polymer Journal. 2019;117:402–423. DOI: 10.1016/j.eurpolymj.2019.05.024.

24. Yilmazer S., Schwaller D., Mésini P. J. Beyond Sol-Gel: Molecular Gels with Different Transitions. Gels. 2023;9(4):273. DOI: 10.3390/gels9040273.

25. Rao M. R., Gaikwad P., Misal P., Gandhi S. V. Phyto-cosmeceutical gel containing curcumin and quercetin loaded mixed micelles for improved anti-oxidant and photoprotective activity. Colloids and Surfaces B: Biointerfaces. 2024;237:113837. DOI: 10.1016/j.colsurfb.2024.113837.

26. Rao M. R., Deshpande S., Deshpande P. Dapsone-Loaded Mixed Micellar Gel for Treatment OF Acne Vulgaris. AAPS PharmSciTech. 2023;24(5):109. DOI: 10.1208/s12249-023-02564-1.


Supplementary files

1. Графический абстракт
Subject
Type Other
View (1MB)    
Indexing metadata ▾

Review

For citations:


Bakhrushina E.O., Afonina A.M., Pyzhov V.S., Mikhel I.B. Study of the issues of maintaining stability of poloxamer-based systems during autoclaving. Drug development & registration. (In Russ.) https://doi.org/10.33380/2305-2066-2025-14-4-2077

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)