Targeted metabolomic profiling of multiple myeloma: diagnostics and treatment efficacy
https://doi.org/10.33380/2305-2066-2025-14-4-2138
Abstract
Introduction. Multiple myeloma (MM) is a malignant disease of plasma cells characterized by marked heterogeneity of the clinical course and variability in response to treatment. Metabolomic analysis, which reflects the totality of small molecules in biological fluids, opens up new possibilities for the search for diagnostic and prognostic biomarkers.
Aim. To evaluate metabolomic profiles of patients with multiple myeloma (MM) and to identify metabolic markers associated with the efficacy of polychemotherapy.
Materials and methods. The study was conducted from September 2022 to May 2025 at the Department of Hospital Therapy No. 1 of Sechenov University. We performed targeted analysis of plasma metabolites in 29 pre-treatment MM patients and 30 healthy volunteers (controls). Patients were divided into response and no response groups based on the results of therapy with VCD protocol after three courses.
Results and discussion. Significant differences in metabolomic profiles of MM patients compared to controls were found. MM patients showed increased tryptophan catabolism via the kynurenine pathway (~41 % increase in kynurenine/tryptophan ratio, ~80 % decrease in serotonin levels), changes in urea and nitric oxide cycle metabolites (~28 % decrease in arginine, ~5.3-fold increase in asymmetric dimethylarginine), and amino acid imbalances (decrease in serine, aspartate, BCAA) and a significant increase in total acylcarnitines (~1.4-fold higher than control). The baseline metabolic profile also differed between patients with different treatment outcomes: before treatment, patients who subsequently showed a clinical response had lower levels of several acylcarnitines and tryptophan breakdown products (e.g. anthranilic acid), whereas patients without response showed decreased levels of 5-hydroxytryptophan, indole-3-lactic acid and histidine.
Conclusions. Metabolomic analysis revealed characteristic metabolic alterations in MM reflecting activation of immunometabolic pathways (tryptophan kynurenine pathway, arginine metabolism) and impaired energy and amino acid regulation. The results indicate the potential prognostic significance of metabolites: a number of biomarkers (e.g. tryptophan derivatives, acylcarnitines) may be associated with chemotherapy sensitivity. The findings open the prospects for further research on metabolic approaches in MM monitoring and therapy.
About the Authors
V. G. VarzievaRussian Federation
8/2, Trubetskaya str., Mosсow, 119991
K. M. Shestakova
Russian Federation
8/2, Trubetskaya str., Mosсow, 119991
A. A. Boldin
Russian Federation
8/2, Trubetskaya str., Mosсow, 119991
D. A. Kutsakina
Russian Federation
8/2, Trubetskaya str., Mosсow, 119991
Yu. Yu. Kirichenko
Russian Federation
8/2, Trubetskaya str., Mosсow, 119991
Yu. N. Belenkov
Russian Federation
8/2, Trubetskaya str., Mosсow, 119991
I. S. Ilgisonis
Russian Federation
8/2, Trubetskaya str., Mosсow, 119991
V. V. Tarasov
Russian Federation
8/2, Trubetskaya str., Mosсow, 119991
S. A. Appolonova
Russian Federation
8/2, Trubetskaya str., Mosсow, 119991
References
1. Cowan A. J., Green D. J., Kwok M., Lee S., Coffey D. G., Holmberg L. A., Tuazon S., Gopal A. K., Libby E. N. Diagnosis and Management of Multiple Myeloma. JAMA. 2022;327(5):464–477. DOI: 10.1001/jama.2022.0003.
2. Rodríguez-Lobato L. G., De Daniel A., Pereira A., Fernández De Larrea C., Tovar N., Cibeira M. T., Moreno D. F., Mateos J. M., Llobet N., Carcelero E., Munárriz D., Bladé J., Rosiñol L. Attrition rates and treatment outcomes in multiple myeloma: real-world data over a 40-year period. Blood Cancer Journal. 2025;15(1):103. DOI: 10.1038/s41408-025-01311-y.
3. Mohty M., Facon T., Malard F., Harousseau J.-L. A roadmap towards improving outcomes in multiple myeloma. Blood Cancer Journal. 2024;14(1):135. DOI: 10.1038/s41408-024-01115-6.
4. Zhao R., Xie Y., Yang B., Wang C., Huang Q., Han Y., Yang L., Yan S., Wang X., Fu C., Wu D., Wu X. Identification of metabolic biomarkers to predict treatment outcome and disease progression in multiple myeloma. American Journal of Cancer Research. 2020;10(11):3935–3946.
5. Nong S., Han X., Xiang Y., Qian Y., Wei Y., Zhang T., Tian K., Shen K., Yang J., Ma X. Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm. 2023;4(2):e218. DOI: 10.1002/mco2.218.
6. Wei Y., Wang J., Chen F., Li X., Zhang J., Shen M., Tang R., Huang Z. Serum Abnormal Metabolites for Evaluating Therapeutic Response and Prognosis of Patients With Multiple Myeloma. Frontiers in Oncology. 2022;12:808290. DOI: 10.3389/fonc.2022.808290.
7. Steiner N., Müller U., Hajek R., Sevcikova S., Borjan B., Jöhrer K., Göbel G., Pircher A., Gunsilius E. The metabolomic plasma profile of myeloma patients is considerably different from healthy subjects and reveals potential new therapeutic targets. PLoS ONE. 2018;13(8):e0202045. DOI: 10.1371/journal.pone.0202045.
8. Markin P. A., Brito A., Moskaleva N., Lartsova E. V., Shpot Y. V., Lerner Y. V., Mikhajlov V. Y., Potoldykova N. V., Enikeev D. V., La Frano M. R., Appolonova S. A. Plasma metabolomic profile in prostatic intraepithelial neoplasia and prostate cancer and associations with the prostate-specific antigen and the Gleason score. Metabolomics. 2020;16(7):74. DOI: 10.1007/s11306-020-01694-y.
9. Shestakova K. M., Moskaleva N. E., Boldin A. A., Rezvanov P. M., Shestopalov A. V., Rumyantsev S. A., Zlatnik E. Yu., Novikova I. A., Sagakyants A. B., Timofeeva S. V., Simonov Yu., Baskhanova S. N., Tobolkina E., Rudaz S., Appolonova S. A. Targeted metabolomic profiling as a tool for diagnostics of patients with non-small-cell lung cancer. Scientific Reports. 2023;13(1):11072. DOI: 10.1038/s41598-023-38140-7.
10. Sun Y., Zhang X., Hang D., Lau H. C.-H., Du J., Liu C., Xie M., Pan Y., Wang L., Liang C., Zhou X., Chen D., Rong J., Zhao Z., Cheung A. H.-K., Wu Y., Gou H., Wong C. C., Du L., Deng J., Hu Z., Shen H., Miao Y., Yu J. Integrative plasma and fecal metabolomics identify functional metabolites in adenoma-colorectal cancer progression and as early diagnostic biomarkers. Cancer Cell. 2024;42(8):1386–1400.E8. DOI: 10.1016/j.ccell.2024.07.005.
11. Fei F., Zheng M., Xu Z., Sun R., Chen X., Cao B., Li J. Plasma Metabolites Forecast Occurrence and Prognosis for Patients With Diffuse Large B-Cell Lymphoma. Frontiers in Oncology. 2022;12:894891. DOI: 10.3389/fonc.2022.894891.
12. Varzieva V. G., Mesonzhnik N. V., Ilgisonis I. S., Belenkov Y. N., Kozhevnikova M. V., Appolonova S. A. Metabolomic biomarkers of multiple myeloma: A systematic review. Biochimica et Biophysica Acta (BBA) – Reviews on Cancer. 2024;1879(5):189151. DOI: 10.1016/j.bbcan.2024.189151.
13. Asano A., Ri M., Masaki A., Maeda Y., Tachita T., Hirade K., Marumo Y., Nakashima T., Hagiwara S., Kinoshita S., Suzuki T., Narita T., Kusumoto S., Komatsu H., Inagaki H., Iida S. Aberrant tryptophan metabolism leads to unfavorable outcomes in lenalidomide-treated myeloma patients. Hematological Oncology. 2023;41(3):424–433. DOI: 10.1002/hon.3108.
14. León-Letelier R. A., Dou R., Vykoukal J., Sater A. H. A., Ostrin E., Hanash S., Fahrmann J. F. The kynurenine pathway presents multi-faceted metabolic vulnerabilities in cancer. Frontiers in Oncology. 2023;13:1256769. DOI: 10.3389/fonc.2023.1256769.
15. Ramji K., Grzywa T. M., Sosnowska A., Paterek A., Okninska M., Pilch Z., Barankiewicz J., Garbicz F., Borg K., Bany-Laszewicz U., Zerrouqi A., Pyrzynska B., Rodziewicz-Lurzynska A., Papiernik D., Sklepkiewicz P., Kedzierska H., Staruch A., Sadowski R., Ciepiela O., Lech-Maranda E., Juszczynski P., Mackiewicz U., Maczewski M., Nowis D., Golab J. Targeting arginase-1 exerts antitumor effects in multiple myeloma and mitigates bortezomib-induced cardiotoxicity. Scientific Reports. 2022;12(1):19660. DOI: 10.1038/s41598-022-24137-1.
16. Reinke J. G., Peng P., Petrusca D. N., Chaudhry K., Carlson L., Schorr C. R., Lee K. P. Role of Tryptophan Metabolizing Enzymes in Multiple Myeloma Survival. Blood. 2024;144(Supplement 1):3350. DOI: 10.1182/blood-2024-211044.
17. Gonsalves W. I., Broniowska K., Jessen E., Petterson X.-M., Bush A. G., Gransee J., Lacy M. Q., Hitosugi T., Kumar S. K. Metabolomic and Lipidomic Profiling of Bone Marrow Plasma Differentiates Patients with Monoclonal Gammopathy of Undetermined Significance from Multiple Myeloma. Scientific Reports. 2020;10(1):10250. DOI: 10.1038/s41598-020-67105-3.
18. Ray A., Song Y., Du T., Tai Y.-T., Chauhan D., Anderson K. C. Targeting tryptophan catabolic kynurenine pathway enhances antitumor immunity and cytotoxicity in multiple myeloma. Leukemia. 2020;34(2):567–577. DOI: 10.1038/s41375-019-0558-x.
19. Gouasmi R., Ferraro-Peyret C., Nancey S., Coste I., Renno T., Chaveroux C., Aznar N., Ansieau S. The Kynurenine Pathway and Cancer: Why Keep It Simple When You Can Make It Complicated. Cancers. 2022;14(11):2793. DOI: 10.3390/cancers14112793.
20. Sahm F., Oezen I., Opitz C. A., Radlwimmer B., von Deimling A., Ahrendt T., Adams S., Bode H. B., Guillemin G. J., Wick W., Platten M. The Endogenous Tryptophan Metabolite and NAD+ Precursor Quinolinic Acid Confers Resistance of Gliomas to Oxidative Stress. Cancer Research. 2013;73(11):3225–3234. DOI: 10.1158/0008-5472.CAN-12-3831.
21. Han Y., Wang P., Guo Z., Xiang A., Cao S., Chen Y. TDO Target Inhibitor Research Progress Review. Journal of Biosciences and Medicines. 2025;13(03):356–368. DOI: 10.4236/jbm.2025.133027.
22. Paranthaman P., Veerappapillai S. Identification of putative Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) dual inhibitors for triple-negative breast cancer therapy. Journal of Biomolecular Structure and Dynamics. 2025;1–19. DOI: 10.1080/07391102.2024.2332509.
23. Giallongo C., Scandura G., Barbato A., La Spina E., Longhitano L., Zuppelli T., Dulcamare I., Parrinello N. L., Giallongo S., Polito F., Oteri R., Aguennouz M., Palumbo G. A., Lolicato M., Volti G. L., Di Raimondo F., Tibullo D., Romano A. Arginine Deprivation in Microenvironment Makes Multiple Myeloma Resistant to Proteasome Inhibitors Via Increased Lactate Release and Metabolic Rewiring. Blood. 2022;140(Supplement 1):7102–3. DOI: 10.1182/blood-2022-170276.
24. Wilcken D. E. L., Sim A. S., Wang J., Wang X. L. Asymmetric dimethylarginine (ADMA) in vascular, renal and hepatic disease and the regulatory role of l-arginine on its metabolism. Molecular Genetics and Metabolism. 2007;91(4):309–317. DOI: 10.1016/j.ymgme.2007.04.017.
25. Yue L., Zeng P., Li Y., Chai Y., Wu C., Gao B. Nontargeted and targeted metabolomics approaches reveal the key amino acid alterations involved in multiple myeloma. PeerJ. 2022;10:e12918. DOI: 10.7717/peerj.12918.
26. Du H., Wang L., Liu B., Wang J., Su H., Zhang T., Huang Z. Analysis of the Metabolic Characteristics of Serum Samples in Patients With Multiple Myeloma. Frontiers in Pharmacology. 2018;9:884. DOI: 10.3389/fphar.2018.00884.
27. Guerreiro da Silva I. D. C., Valadares de Castro Levatti E., Pedroso A. P., Lobo Marchioni D. M., Ferreira Carioca A. A., Braga Colleoni G. W. Biochemical phenotyping of multiple myeloma patients at diagnosis reveals a disorder of mitochondrial complexes I and II and a Hartnup-like disturbance as underlying conditions, also influencing different stages of the disease. Scientific Reports. 2020;10(1):21836. DOI: 10.1038/s41598-020-75862-4.
28. Kuo T.-R., Chen C.-H. Bone biomarker for the clinical assessment of osteoporosis: recent developments and future perspectives. Biomarker Research. 2017;5(1):18. DOI: 10.1186/s40364-017-0097-4.
29. Chanukuppa V., More T. H., Taunk K., Taware R., Chatterjee T., Sharma S., Rapole S. Serum metabolomic alterations in multiple myeloma revealed by targeted and untargeted metabolomics approaches: a pilot study. RSC Advances. 2019;9(51):29522–29532. DOI: 10.1039/C9RA04458B.
30. Peng H., Wang Y., Luo W. Multifaceted role of branched-chain amino acid metabolism in cancer. Oncogene. 2020;39(44):6747–6756. DOI: 10.1038/s41388-020-01480-z.
31. Jung M. K., Okekunle A. P., Lee J. E., Sung M. K., Lim Y. J. Role of Branched-chain Amino Acid Metabolism in Tumor Development and Progression. Journal of Cancer Prevention. 2021;26(4):237–43. DOI: 10.15430/JCP.2021.26.4.237.
32. Wang J., Wang W., Zhu F., Duan Q. The role of branched chain amino acids metabolic disorders in tumorigenesis and progression. Biomedicine & Pharmacotherapy. 2022;153:113390. DOI: 10.1016/j.biopha.2022.113390.
33. McCann M. R., George De La Rosa M. V., Rosania G. R., Stringer K. A. L-Carnitine and Acylcarnitines: Mitochondrial Biomarkers for Precision Medicine. Metabolites. 2021;11(1):51. DOI: 10.3390/metabo11010051.
34. Lemons J. M. S., Conrad M., Tanes C., Chen J., Friedman E. S., Roggiani M., Curry D., Chau L., Hecht A. L., Harling L., Vales J., Kachelries K. E., Baldassano R. N., Goulian M., Bittinger K., Master S. R., Liu L., Wu G. D. Enterobacteriaceae Growth Promotion by Intestinal Acylcarnitines, a Biomarker of Dysbiosis in Inflammatory Bowel Disease. Cellular and Molecular Gastroenterology and Hepatology. 2024;17(1):131–48. DOI: 10.1016/j.jcmgh.2023.09.005.
35. Flemming A. Tumour cell consumption of taurine exhausts CD8+ T cells. Nature Reviews Immunology. 2024;24(5):306–306. DOI: 10.1038/s41577-024-01032-6.
36. Lodi A., Tiziani S., Khanim F. L., Günther U. L., Viant M. R., Morgan G. J., Bunce C. M., Drayson M. T. Proton NMR-Based Metabolite Analyses of Archived Serial Paired Serum and Urine Samples from Myeloma Patients at Different Stages of Disease Activity Identifies Acetylcarnitine as a Novel Marker of Active Disease. PLoS ONE. 2013;8(2):e56422. DOI: 10.1371/journal.pone.0056422.
37. Falank C., Fairfield H., Farrell M., Reagan M. New Bone Cell Type Identified As Driver of Drug Resistance in Multiple Myeloma: The Bone Marrow Adipocyte. Blood. 2017;130:122. DOI: 10.1182/blood.V130.Suppl_1.122.122.
38. Zhang Q., Zhao Q., Li T., Lu L., Wang F., Zhang H., Liu Z., Ma H., Zhu Q., Wang J., Zhang X., Pei Y., Liu Q., Xu Y., Qie J., Luan X., Hu Z., Liu X. Lactobacillus plantarum-derived indole-3-lactic acid ameliorates colorectal tumorigenesis via epigenetic regulation of CD8+ T cell immunity. Cell Metabolism. 2023;35(6):943–960.E9. DOI: 10.1016/j.cmet.2023.04.015.
39. Bender M. J., McPherson A. C., Phelps C. M., Pandey S. P., Laughlin C. R., Shapira J. H., Medina Sanchez L., Rana M., Richie T. G., Mims T. S., Gocher-Demske A. M., Cervantes-Barragan L., Mullett S. J., Gelhaus S. L., Bruno T. C., Cannon N., McCulloch J. A., Vignali D. A. A., Hinterleitner R., Joglekar A. V., Pierre J. F., Lee S. T. M., Davar D., Zarour H. M., Meisel M. Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment. Cell. 2023;186(9):1846–1862.e26. DOI: 10.1016/j.cell.2023.03.011.
40. Kumar N., Rachagani S., Natarajan G., Crook A., Gopal T., Rajamanickam V., Kaushal J. B., Nagabhishek S. N., Powers R., Batra S. K., Saraswathi V. Histidine Enhances the Anticancer Effect of Gemcitabine against Pancreatic Cancer via Disruption of Amino Acid Homeostasis and Oxidant—Antioxidant Balance. Cancers. 2023;15(9):2593. DOI: 10.3390/cancers15092593.
41. Huang Y., Snuderl M., Jain R. K. Polarization of Tumor-Associated Macrophages: A Novel Strategy for Vascular Normalization and Antitumor Immunity. Cancer Cell. 2011;19(1):1–2. DOI: 10.1016/j.ccr.2011.01.005.
42. Frezza C. Histidine metabolism boosts cancer therapy. Nature. 2018;559(7715):484–485. DOI: 10.1038/d41586-018-05573-4.
43. Kanarek N., Keys H. R., Cantor J. R., Lewis C. A., Chan S. H., Kunchok T., Abu-Remaileh M., Freinkman E., Schweitzer L. D., Sabatini D. M. Histidine catabolism is a major determinant of methotrexate sensitivity. Nature. 2018;559(7715):632–636. DOI: 10.1038/s41586-018-0316-7.
44. Pan Y., Deng L., Wang H., He K., Xia Q. Histidine-rich glycoprotein (HRGP): Pleiotropic and paradoxical effects on macrophage, tumor microenvironment, angiogenesis, and other physiological and pathological processes. Genes & Diseases. 2022;9(2):381–392. DOI: 10.1016/j.gendis.2020.07.015.
45. Nishimura Y., Wake H., Teshigawara K., Wang D., Sakaguchi M., Otsuka F., Nishibori M. Histidine-rich glycoprotein augments natural killer cell function by modulating PD-1 expression via CLEC-1B. Pharmacology Research & Perspectives. 2019;7(3):e00481. DOI: 10.1002/prp2.481.
Supplementary files
|
|
1. Графический абстракт | |
| Subject | ||
| Type | Исследовательские инструменты | |
View
(1MB)
|
Indexing metadata ▾ | |
Review
For citations:
Varzieva V.G., Shestakova K.M., Boldin A.A., Kutsakina D.A., Kirichenko Yu.Yu., Belenkov Yu.N., Ilgisonis I.S., Tarasov V.V., Appolonova S.A. Targeted metabolomic profiling of multiple myeloma: diagnostics and treatment efficacy. Drug development & registration. (In Russ.) https://doi.org/10.33380/2305-2066-2025-14-4-2138


































