Efficacy of ethylmethylhydroxypyridine succinate derivative in a model of intermittent hypoxia in comparison with the reference drug
https://doi.org/10.33380/2305-2066-2025-14-4-2160
Abstract
Introduction. Intermittent hypoxia (IH) promotes oxygen free radical oxidation, which may precede many diseases. Decreased physical activity, ischaemic processes in organs and disturbances at the cellular level, may be a consequence of intermittent hypoxia. It is important to search for potential drugs to correct this process.
Aim. Comparative study of the efficacy of the active metabolite of ethylmethylhydroxypyridine succinate (EMHPS), ethylmethylsulfapyridine (EMSP), with a native molecule in a model of IG in mice.
Materials and methods. Test subjects were administered intraperitoneally for 14 days – EMSP was administered at a dose of 85 mg/kg, Mexidol® – at a dose of 100 mg/kg. Prolonged intermittent hypoxia was reproduced by placing animals in a membrane hypoxifier. The following conditions have been set for 14 days: 6 % – oxygen content in the hypoxic chamber, duration – 6 hours. The effect of the drug on dynamic load (grip strength test), respiratory parameters (plethysmograph parameters), behavioral and cognitive parameters (open field and elevated plus maze tests), heart rate and venous oxygen saturation were evaluated, and the potential mechanism of action was studied by real-time PCR.
Results and discussion. It was found that EMSP was effective in terms of plethysmography parameters, in particular, it helped the body adapt to chronic hypoxic effects, which resulted in significant differences in inhalation and exhalation parameters from the control group. The study of behavioral and cognitive states revealed the presence of anxiety, decreased exploratory activity and increased mobility of animals in all groups. These parameters were less pronounced for animals treated with EMSP and Mexidol® than in the control group. There was a tendency to increase the expression of a gene affecting the ubiquinol-cytochrome c-reductase complex, which is a part of mitochondrial respiration.
Conclusion. According to the results of the study, EMSP showed comparable protective properties with a native molecule EMHPS. There was also a tendency to increase the stimulation of UQCRC2 gene against the background of EMSP administration compared with EMHPS.
About the Authors
G. A. PliskoRussian Federation
14A, Professora Popova str., Saint-Petersburg, 197022
D. Yu. Ivkin
Russian Federation
14A, Professora Popova str., Saint-Petersburg, 197022
S. V. Okovitiy
Russian Federation
14A, Professora Popova str., Saint-Petersburg, 197022
V. Ts. Bolotova
Russian Federation
14A, Professora Popova str., Saint-Petersburg, 197022
E. M. Evgenyeva
Russian Federation
3/245, Zavodskaya str., Kuzmolovsky settlement, Vsevolozhski district, Leningrad region, 188663
N. S. Kurmazov
Russian Federation
14A, Professora Popova str., Saint-Petersburg, 197022;
9, Akademika Pavlova str., Saint-Petersburg, 197022
T. A. Pyatizbyantsev
Russian Federation
6–8, L’va Tolstogo str., Saint-Petersburg, 197022
M. V. Zhuravleva
Russian Federation
14A, Professora Popova str., Saint-Petersburg, 197022
M. A. Tikhaya
Russian Federation
14A, Professora Popova str., Saint-Petersburg, 197022
E. E. Paderina
Russian Federation
14A, Professora Popova str., Saint-Petersburg, 197022
References
1. Kim A. E., Shustov E. B., Tsygan V. N., Belykh M. A., Okovityy S. V., Selizarova N. O., Napalkova S. M., Katkova E. B., Korablev R. V. Metabolic effects of long-term exposure to wave-like oxygen fasting of moderate severity. Russian Biomedical Research. 2023;8(2):4–11. DOI: 10.56871/RBR.2023.46.59.001.
2. Badran M., Gozal D. Intermittent Hypoxia as a Model of Obstructive Sleep Apnea. Sleep Medicine Clinics. 2025;20(1):93–102. DOI: 10.1016/j.jsmc.2024.10.009.
3. Burchakov D. I., Mayorov A. Yu. Intermittent hypoxia due to sleep apnea syndrome in patients with type 2 diabetes mellitus. S.S. Korsakov Journal of Neurology and Psychiatry. 2017;117(10):16–21. (In Russ.) DOI: 10.17116/jnevro201711710116-21.
4. Soukhova G. K., Nozdrachev A. D. Neonatal intermittent hypoxia and age-related changes in control of cardiovascular function. Biological Communications. 2008;4:132–136. (In Russ.)
5. Misnikova I. V. Sleep apnea in endocrine disorders. Almanac of Clinical Medicine. 2016;44(4):493–500. (In Russ.) DOI: 10.18786/2072-0505-2016-44-4-493-500.
6. Gong L.-J., Wang X.-Y., Gu W.-Y., Wu X. Pinocembrin ameliorates intermittent hypoxia-induced neuroinflammation through BNIP3-dependent mitophagy in a murine model of sleep apnea. Journal of Neuroinflammation. 2020;17(1):337. DOI: 10.1186/s12974-020-02014-w.
7. Punina A. A., Gribova N. P. Nocturnal intermittent hypoxia role in the development of cognitive disorders in patients with chronic cerebral ischemia. RMJ. 2024;4:18–22. (In Russ.)
8. Lavie L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia – Revisited – The bad ugly and good: implications to the heart and brain. Sleep Medicine Reviews. 2015;20:27–45. DOI: 10.1016/j.smrv.2014.07.003.
9. Liu X., Ma Y., Ouyang R., Zeng Z., Zhan Z., Lu H., Cui Y., Dai Z., Luo L., He C., Li H., Zong D., Chen Y. The relationship between inflammation and neurocognitive dysfunction in obstructive sleep apnea syndrome. Journal of Neuroinflammation. 2020;17(1):229. DOI: 10.1186/s12974-020-01905-2.
10. Uchiyama T., Ota H., Ohbayashi C., Takasawa S. Effects of Intermittent Hypoxia on Cytokine Expression Involved in Insulin Resistance. International Journal of Molecular Sciences. 2021;22(23):12898. DOI: 10.3390/ijms222312898.
11. Jędrejko K., Catlin O., Stewart T., Muszyńska B. Mexidol, Cytoflavin, and succinic acid derivatives as antihypoxic, anti-ischemic metabolic modulators, and ergogenic aids in athletes and consideration of their potential as performance enhancing drugs. Drug Testing and Analysis. 2024;16(12):1436–1467. DOI: 10.1002/dta.3655.
12. Voronina T. A., Litvinova S. A., Gladysheva N. A., Shulyndin A. V. The known and new ideas about the mechanism of action and the spectrum of effects of Mexidol. S.S. Korsakov Journal of Neurology and Psychiatr. 2025;125(5):22–30. DOI: 10.17116/jnevro202512505122.
13. Voznyuk I. A., Kolomentsev S. V., Morozova E. M. The impact of therapy with Mexidol on neurological deficit and functional outcome in patients with ischemic stroke: a systematic review and meta-analysis. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(12 vyp. 2):49–60. DOI: 10.17116/jnevro202312312249.
14. Smirnova K. V., Gildikov D. I. Comparative efficacy of antioxidant drugs in an in vitro experiment. Russian Veterinary Journal. 2021;2:37–40.
15. Ivkin D. Yu., Sukhanov D. S., Plisko G. A., Ivkina A. S., Krasnova M. V., Titovich I. A., Semivelichenko E. D., Stepanova I. L., Il’nickij V. P., Karpov A. A., Okovityi S. V., Karshin A. V. Antihypoxic activity of various ethylmethylhydroxypyridine salts. Molecular medicine. 2020;18(4):36–41. (In Russ.) DOI: 10.29296/24999490-2020-04-05.
16. Plisko G. A. Nogaeva U. V., Semivelichenko E. D., Ivkin D. Yu., Titovich I. A., Flisyuk E. V., Demakova N. V., Ivkina A. S. Comparative efficacy of ethylmethylhydroxypyridine succinate derivatives in acute CCl 4 intoxication. Laboratory Animals for Science. 2021;2:3–9. (In Russ.) DOI: 10.29296/2618723X-2021-02-01.
17. Bannow L. I., Bonaterra G. A., Bertoune M., Maus S., Schulz R., Weissmann N., Kraut S., Kinscherf R., Hildebrandt W. Effect of chronic intermittent hypoxia (CIH) on neuromuscular junctions and mitochondria in slow- and fast-twitch skeletal muscles of mice—the role of iNOS. Skeletal Muscle. 2022;12:6. DOI: 10.1186/s13395-022-00288-7.
18. Andreeva N. N. Experimental and clinical aspects of the use of mexidol in hypoxia. Medical almanac. 2009;4:193–197. (In Russ.)
19. Ivanova E. A., Vasilchuk A. G., Matyushkin A. I., Voronina T. A. Effect of multiple-dose regimens of cyclooxygenase inhibitors and their combinations with mexidol on behavior in mature rats. Pharmacokinetics and Pharmacodynamics. 2023;(1):33–40. (In Russ.) DOI: 10.37489/2587-7836-2023-1-33-40.
20. Avdeeva N. V. A study of neuroprotective properties of the MGLUR4 receptor agonist – ZC64-0001 in comparison with Mexidol. Research Results in Biomedicine. 2020;6(2):219–226. (In Russ.) DOI: 10.18413/2658-6533-2020-6-2-0-6.
21. Bezawork-Geleta A., Rohlena J., Dong L., Pacak K., Neuzil J. Mitochondrial complex II: at the crossroads. Trends in Biochemical Sciences. 2017;42(4):312–325. DOI: 10.1016/j.tibs.2017.01.003.
22. Wang D.-W., Su F., Zhang T., Yang T.-C., Wang H.-Q., Yang L.-J., Zhou F.-F., Feng M.-H. The miR-370/UQCRC2 axis facilitates tumorigenesis by regulating epithelial-mesenchymal transition in Gastric Cancer. Journal of Cancer. 2020;11(17):5042–5055. DOI: 10.7150/jca.45553.
23. Bu L., Zhang L., Wang X., Du G., Wu R., Liu W. Association between NDUFS1 from urinary extracellular vesicles and decreased differential renal function in children with ureteropelvic junction obstruction. BMC Nephrology. 2024;25(1):158. DOI: 10.1186/s12882-024-03592-0.
24. Weidner L. D., Kannan P., Mitsios N., Kang S. J., Hall M. D., Theodore W. H., Innis R. B., Mulder J. The expression of inflammatory markers and their potential influence on efflux transporters in drug-resistant mesial temporal lobe epilepsy tissue. Epilepsia. 2018;59(8):1507–1517. DOI: 10.1111/epi.14505.
Review
For citations:
Plisko G.A., Ivkin D.Yu., Okovitiy S.V., Bolotova V.Ts., Evgenyeva E.M., Kurmazov N.S., Pyatizbyantsev T.A., Zhuravleva M.V., Tikhaya M.A., Paderina E.E. Efficacy of ethylmethylhydroxypyridine succinate derivative in a model of intermittent hypoxia in comparison with the reference drug. Drug development & registration. https://doi.org/10.33380/2305-2066-2025-14-4-2160


































