Development of medicines based on 5-phenyltetrazole derivatives for the pharmacological correction of metabolic phenomena
https://doi.org/10.33380/2305-2066-2026-15-1-2208
Abstract
Introduction. Many compounds containing a tetrazole component are superior in efficacy to other antidiabetic drugs in preclinical studies, and some candidates are already in current trials. The widespread use of tetrazole derivatives to target diabetes-associated targets and therapies that maintain their stability provide the basis for the development of new, effective antidiabetic agents.
Aim. A study (in silico, synthesis, in vivo) of a series of hybrid 5-phenyltetrazole derivatives was conducted to identify and conduct experimental validation of promising compounds exhibiting hypoglycemic and anti-fat activity.
Materials and methods. The synthesis of hybrid heterocyclic compounds was accomplished by acylation of a series of heterocyclic derivatives of N-alkyl-5-aminotetrazole, 4-amino-4H-1,2,4-triazole-3-thiol, and 2-hydrazinyl-4,6-dimethylpyrimidine with 5-phenyltetrazol-2-ylacetic acid chloride.
Results and discussion. As a result of in silico (PASS, docking, scoring) study of biological activity in a series of 5-phenyltetrazole derivatives, the most promising "hybrid" (polynuclear) heterocyclic compounds were identified: N'-(4,6-dimethylpyrimidin-2-yl)-2-(5-phenyl-2H-tetrazol-2-yl)-acetohydrazide, N-(3-mercapto-4H-1,2,4-triazol-4-yl)-2-(5-phenyl-2H-tetrazol-2-yl)-acetamide, N-(1-methyl-1H-tetrazol-5-yl)-2-(5-phenyl-2H-tetrazol-2-yl)-acetamide, N-(2-methyl-2H-tetrazol-5-yl)-2-(5-phenyl-2H-tetrazol-2-yl)-acetamide and N-tert-butyl-2-({1-[2-(5-phenyl-2H-tetrazol-2-yl)acetamido]-1H-tetrazol-5-yl}thio)acetamide. These predictions are of interest as potential computer-aided means for the pharmacological correction of various metabolic phenomena. A rational method for synthesizing these compounds was developed and implemented, the structure and individuality of which were demonstrated using modern instrumental physicochemical methods. In vivo studies demonstrated that these heterocyclic compounds exhibit hypoglycemic and pronounced anti-lipid activity.
Conclusion. The study of hybrid 5-phenyltetrazole derivatives revealed pronounced hypoglycemic activity. It was found that the anti-lipid activity in this case is not directly related to the hypoglycemic effect, unlike the manifestation characteristic of the sensitizer metformin.
Keywords
About the Authors
A. Yu. GrishinaRussian Federation
14A, Professora Popova str., Saint-Petersburg, 197022
D. V. Antonenko
Russian Federation
39, 14th Line, Saint-Petersburg, 199178;
Bldg. А, 24–26/49, Moskovsky prospekt, Saint-Petersburg, 190013
M. A. Skrylnikova
Russian Federation
39, 14th Line, Saint-Petersburg, 199178;
Bldg. А, 24–26/49, Moskovsky prospekt, Saint-Petersburg, 190013
O. V. Buyuklinskaya
Russian Federation
14A, Professora Popova str., Saint-Petersburg, 197022
V. Ts. Bolotova
Russian Federation
14A, Professora Popova str., Saint-Petersburg, 197022
V. E. Kovanskov
Russian Federation
14A, Professora Popova str., Saint-Petersburg, 197022
V. A. Ostrovskii
Russian Federation
39, 14th Line, Saint-Petersburg, 199178;
Bldg. А, 24–26/49, Moskovsky prospekt, Saint-Petersburg, 190013
References
1. Ostrovskii V. A., Miron S. B., Pavlyukova Yu. N. A process chemist’s perspective on import substitution of pharmaceuticals. Izvestiya Akademii Nauk. Seriya Khimicheskaya. 2023;72(12):3037–3051. (In Russ.).
2. IDF Diabetes Atlas: International Diabetes Federation Diabetes Atlas. 10th edition. Brussels: International Diabetes Federation; 2021.
3. Chatterjee S., Khunti K., Davies M. J. Type 2 diabetes. The Lancet. 2017;389:2239–2251. DOI: 10.1016/S0140-6736(17)30058-2.
4. Ruze R., Liu T., Zou X., Song J., Chen Yu., Xu R., Yin X., Xu Q. Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments. Frontiers in Endocrinology. 2023;14:1161521. DOI: 10.3389/fendo.2023.1161521.
5. Popova E. A., Trifonov R.E., Ostrovskii V. A. Tetrazoles for biomedicine. Russian Chemical Reviews. 2019;88(6):644–676. DOI: 10.1070/RCR4864.
6. Kaplanskiy M. V., Faizullina O. E., Trifonov R. E. Experimental and Theoretical Quantitative Studies of the Hydrogen Bonding Basicity of 2,5-Disubstituted Tetrazoles and Some Related Heterocycles. The Journal of Physical Chemistry A. 2023;127(26):5572–5579. DOI: 10.1021/acs.jpca.3c02931.
7. Trifonov R. E., Ostrovskii V. A. Tetrazoles and Related Heterocycles as Promising Synthetic Antidiabetic Agents. International Journal of Molecular Sciences. 2023;24(24):17190. DOI: 10.3390/ijms242417190.
8. Ostrovskii V. A., Shmaneva N. T., Ershov I. S., Antonenko D. V., Skrylґnikova M. A., Khramchikhin A. V., Chernova E. N., Grishina A. Yu., Anisimova N. A., Napalkova S. M., Buyuklinskaya O. V., Mazhai V. S, Pavlyukova Yu. N., Trifonov R. E. 2-(5-Phenyl-2H-tetrazol-2-yl)acetyl chloride as a key reagent in the synthesis of non-annulated polynuclear tetrazole-containing compounds with potential antidiabetic activity. Russian Chemical Bulletin. 2024;73(7):1977–1983. (In Russ.)
9. Suriano F., Vieira-Silva S., Falony G., Roumain M., Paquot A., Pelicaen R., Régnier M., Delzenne N. M., Raes J., Muccioli G. G., Van Hul M., Cani P. D. Novel insights into the genetically obese (ob/ob) and diabetic (db/db) mice: two sides of the same coin. Microbiome. 2021;9(1):147. DOI: 10.1186/s40168-021-01097-8.
10. Poroikov V. V., Filimonov D. A., Gloriozova T. A., Lagunin A. A., Druzhilovsky D. S., Rudik A. V., Stolbov L. A., Dmitriev A. V., Tarasova O. A., Ivanov S. M., Pogodin P. V. Computer prediction of spectra of biological activity for organic compounds: possibilities and limitations. Izvestiya Akademii Nauk. Seriya Khimicheskaya. 2019;12:2143–2154. (In Russ.)
11. Poroikov V. V. Computer-Aided Drug Design: from Discovery of Novel Pharmaceutical Agents to Systems Pharmacology. Biomeditsinskaya Khimiya. 2020;66(1):30–41. (In Russ.) DOI: 10.18097/PBMC20206601030.
12. Trott O., Olson A. J. "AutoDock Vina": improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry. 2010;31:455–461.
13. Kroker A. J., Bruning J. B. Review of the Structural and Dynamic Mechanisms of PPARγ Partial Agonism. PPAR Research. 2015;2015:816856. DOI: 10.1155/2015/816856.
14. Mironov A. N., Bunatyan N. D. Guidance for conducting preclinical studies of medicinal products. Part one. Moscow: Grif i K; 2012. 944 p. (In Russ.)
15. Jain A. K., Vaidya A., Ravichandran V., Kashaw S. K., Agrawal R. K. Recent developments and biological activities of thiazolidinone derivatives: a review. Bioorganic & Medicinal Chemistry. 2012;20(11):3378–3395. DOI: 10.1016/j.bmc.2012.03.069.
16. Foretz M., Guigas B., Viollet B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nature Reviews Endocrinology. 2019;15(10):569–589. DOI: 10.1038/s41574-019-0242-2.
Supplementary files
|
|
1. Графический абстракт | |
| Subject | ||
| Type | Исследовательские инструменты | |
View
(1MB)
|
Indexing metadata ▾ | |
Review
For citations:
Grishina A.Yu., Antonenko D.V., Skrylnikova M.A., Buyuklinskaya O.V., Bolotova V.Ts., Kovanskov V.E., Ostrovskii V.A. Development of medicines based on 5-phenyltetrazole derivatives for the pharmacological correction of metabolic phenomena. Drug development & registration. (In Russ.) https://doi.org/10.33380/2305-2066-2026-15-1-2208


































