Features of Hyaluronic Acid Solutions for Intra-articular Introduction and Recent Trends in Their Development (Review)
https://doi.org/10.33380/2305-2066-2020-9-2-45-54
Abstract
Introduction. The most common way to maintain the viscoelastic properties of synovial fluid is intra-articular administration of hyaluronic acid solutions. Such forms have several features due to the method of administration, the characteristics of the substance, as well as their composition, technology, and packaging. The aim of the work to analyze the features of hyaluronic acid solutions for intra-articular administration, as well as to consider resent trends to their pharmaceutical development.
Text. Currently, in Russia, most of these forms are registered as medical devices. Each drug has its characteristics, including the source of the substance, the main molecular weight and the molecular weight range of hyaluronic acid, the structure of the molecule (linear or cross-linked), the method of its chemical modification, concentration, solution volume, dosage, etc. As excipients most often use sodium chloride, water for injection, and phosphate-buffered saline to maintain pH values close to the synovial fluid. Some prostheses contain mannitol as an antioxidant. Combinations of hyaluronic acid with active chondroprotective substances (chondroitin sulfate, sodium succinate) are known. The main type of primary packaging is glass prefilled syringes. The choice of sterilization methods is determined by the chemical structure of hyaluronic acid, aseptic production is used for most prostheses.
Conclusion. Currently, research solutions to create thermostable and enzyme-resistant compositions with hyaluronic acid for intra-articular administration are being successfully applied. Modern developments are aimed at creating polymer complexes of hyaluronic acid with substances that improve the lubricity of solutions, the development of nanosystems (liposomes, nanoparticles, nano micelles, etc.) with chondroprotective, as well as the creation of inert biocompatible prostheses with viscoelastic properties. The creation of forms of hyaluronic acid and alternative drugs that can support the rheological properties of synovial fluid is currently a promising area of research.
About the Authors
Y. Y. ZagorulkoRussian Federation
Yury Y. Zagorulko
2, Litovskaya str., Saint-Petersburg 194100
E. Y. Zagorulko
Russian Federation
Elena Y. Zagorulko
14A, Prof. Popov str., Saint-Petersburg, 197376
References
1. Barker S. A., Bayyuk S. H., Brimacombe J. S., Hawkins C. F., Stacey M. Fingerprinting the hyaluronic acid component of normal and pathological synovial fluids. Clin Chim. Acta. 1963; 8: 902–909. DOI:10.1016/0009-8981(63)90013-5.
2. Dahl L. B., Dahl I. M., Engstrom-Laurent A., Granath K. Concentration and molecular weight of sodium hyaluronate in synovial fluid from patients with rheumatoid arthritis and other arthropathies. Annals of the Rheumatic Diseases. 1985, 44: 817–822. DOI:10.1136/ard.44.12.817.
3. Dernek B., Kesiktas F. N., Duymus T. M., Diracoglu D., Aksoy C. Therapeutic efficacy of three hyaluronic acid formulations in young and middle-aged patients with early-stage meniscal injuries. J Phys Ther Sci. 2017; 29(7): 1148–1153. DOI: 10.1589/jpts.29.1148.
4. Temple-Wong M. M., Ren S., Quach P., Hansen B. C., Chen A. C., Hasegawa A., D’Lima D. D., Koziol J., Masuda K., Lotz M. K., Sah R. L. Hyaluronan concentration and size distribution in human knee synovial fluid: variations with age and cartilage degeneration. Arthritis Res Ther. 2016; 18: 18. DOI: 10.1186/s13075-016-0922-4.
5. de Rezende M. U., de Campos G. C. Viscosupplementation. Rev Bras Ortop. 2015; 6;47(2):160-4. DOI: 10.1016/S2255-4971(15)30080-X.
6. Bowman S., Awad M. E., Hamrick M. W., Hunter M., Fulzele S. Recent advances in hyaluronic acid based therapy for osteoarthritis. Clin Transl Med. 2018; 7(1): 6. DOI: 10.1186/s40169-017-0180-3.
7. Migliore A., Granate M. Intra-articular use of hyaluronic acid in the treatment of osteoarthritis. Clinical Interventios in Aging. 2008; 3(20): 365–369. DOI: 10.2147/cia.s778.
8. Hakakzadeh А., Azarsina S., Biglari F. A New Approach to Treatment of Patellar Chondromala Intra-Articular Injection of Hyaluronic Acid. Trauma Mon. 2019; 24(4): e88983. DOI: 10.5812/traumamon.88983.
9. Selyanin M. A. Boykov P. Y. Khabarov V. N., Polyak F. Hyaluronic Acid: Preparation, Properties, Application in Biology and Medicine. John Wiley & Sons, Ltd. 2015: 198. DOI: 10.1002/9781118695920.
10. Sirin D., Kaplan N., Yilmaz I., Karaarslan N., Ozbek H., Akyuva Y. The association between different molecular weights of hyaluronic acid and CHAD, HIF-1α, COL2A1 expression in chondrocyte cultures. Experimental and Therapeutic Medicine. 2018. DOI: 10.3892/etm.2018.5943.
11. Smith M. M., Ghosh P. The synthesis of hyaluronic acid by human synovial fibroblasts is influenced by the nature of the hyaluronate in the extracellular environment. Rheumatol Int. 1987; 7: 113–122. DOI: 10.1007/bf00270463.
12. Zheng Y., Yang J., Liang J., Xu X., Cui W., Deng L. Zhang H. Bioinspired Hyaluronic Acid/Phosphorylcholine Polymer with Enhanced Lubrication and Anti-Inflammation. Biomacromolecules. 2019; 20(11): 4135–4142. DOI: 10.1021/acs.biomac.9b00964.
13. Sigaeva N. N., Kolesov S. V., Nazarov P. V., Vildanova R. R. Chemical modification of hyaluronic acid and its application in medicine. Bulletin of Bashkir University. 2012; 17, 3: 1220–1241. (in Russ).
14. Borzacchiello A., Mayol L., Schiavinato A., Ambrosio, L. Effect of hyaluronic acid amide derivative on equine synovial fluid viscoelasticity. J. Biomed. Mater. Res. 2010; 92A: 1162–1170. DOI:10.1002/jbm.a.32455.
15. Fan Z., Li J., Liu J., Jiao H., Liu B. Anti-Inflammation and Joint Lubrication Dual Effects of a Novel Hyaluronic Acid/Curcumin Nanomicelle Improve the Efficacy of Rheumatoid Arthritis Therapy. ACS Appl Mater Interfaces. 2018; 10(28): 23595–23604. DOI: 10.1021/acsami.8b06236.
16. Leone G., Consumi M., Pepi S., Pardini A., Bonechi C., Tamasi G., Donati A., Lamponi S., Rossi C., Magnani A. Enriched Gellan Gum hydrogel as visco-supplement. Carbohydr Polym. 2020; 227: 115347. DOI: 10.1016/j.carbpol.2019.115347.
17. Liu A., Wang P., Zhang J., Ye W., Wei Q. Restoration effect and tribological behavior of hyaluronic acid reinforced with graphene oxide in osteoarthritis. J. Nanosci.Nanotechno. 2019; 19 (1): 91–97. DOI: 10.1166/jnn.2019.16443.
18. NOLTREX™. Available from: https://www.noltrex.ru/pacientam/omolekulyarnoj-masse/ (accessed 27.01.2020) (in Russ).
19. Ye H., Han M., Huang R., Schmidt T.A., Qi W., He Z. Interactions between Lubricin and Hyaluronic Acid Synergistically Enhance Antiadhesive Properties. ACS Appl Mater Interfaces. 2019; 11: 18090−18102. DOI:11(20):18090-18102.
20. Savoskin O. V, Semyonova E. F., Rashevskaya E. Y/, Polyakova A. A., Grybkova E. A., Agabalaeva K. O., Moiseeva I. Ya. A description of different methods used to obtain hyaluronic acid. Scientific Review. Biological science. 2017; 2: 125–135 (in Russ).
21. Tirtaatmadja V., Boger D. V., Fraser J. R. E. The dynamic and steady shear properties of synovial fluid and of the components making up synovial fluid. Rheol Acta. 1984; 23: 311–321. DOI: 10.1007/bf01332196.
22. Cowman M. K., Shortt C., Arora S., Fu Y., Villavieja J., Rathore J., Huang X., Rakshit T., Jung G. I., Kirsch T. Role of Hyaluronan in Inflammatory Effects on Human Articular Chondrocytes. Inflammation. 2019; 42(5): 1808–1820. DOI: 10.1007/s10753-019-01043-9.
23. Tadmor R., Chen N., Israelachvili J. N. Thin film rheology and lubricity of hyaluronic acid solutions at a normal physiological concentration. J Biomed Mater Res. 2002; 61(4): 514–523. DOI: 10.1002/jbm.10215.
24. Zappone B., Ruths M., Greene G. W., Jay G. D., Israelachvili J. N. Adsorption, lubrication, and wear of lubricin on model surfaces: Polymer brush-like behavior of a glycoprotein. Biophys J. 2007; 92(5): 1693–1708. DOI:10.1529/biophysj.106.088799.
25. Stern R. Hyaluronan catabolism: a new metabolic pathway. Eur. J. Cell Biol. 2004; 83: 317–325. DOI: 10.1078/0171-9335-00392.
26. Synvisc® (Hylan G-F 20). Available at: https://www.sanofi.ru/-/media/Project/One-Sanofi-Web/Websites/Europe/Sanofi-RU/Home/healthcare-solutions/internal-illnesses/Synvisc-03Jun2012.pdf?la=ru (accessed 27.01.2020).
27. The state register of medicines. Available at: https://grls.rosminzdrav.ru/Default.aspx (accessed 27.01.2020) (in Russ).
28. Hyruan®. Available at: https://philosmed.com/wp-content/uploads/2018/11/20180717.pdf. (accessed 10.02.2020).
29. Fermathron® Viscosupplements. Available at: http://www.mediteckbeontop.it/images/pdf/Biologic/0425.2-EMEAenFermathronFamilyBrochure-DIGITAL.pdf (accessed 27.01.2020).
30. Synocrom®. Available at: https://docplayer.ru/34843434-Synocromforte-2-2-ml-40-mg-stabilizirovannyy-rastvor-gialuronata-natriya.html (accessed 27.01.2020).
31. Fidalgo López J., Deglesne P-A., Arroyo R., Sepúlveda L., Ranneva E., Deprez P. Detection of a new reaction by-product in BDDE crosslinked autoclaved hyaluronic acid hydrogels by LC– MS analysis. Medical Devices: Evidence and Research. 2018; 11: 367–76. DOI: 10.2147/mder.s166999.
32. The state register of medical devices and organizations engaged in the production and manufacture of medical devices. Available at: http://www.roszdravnadzor.ru/services/misearch. (accessed 27.01.2020) (in Russ).
33. Durolane®. Available at: https://www.durolane.com/cae/durolanesj/ (accessed 27.01.2020).
34. OSTENIL®. Available at: http://www.chemedica.mx/files/OSTENILLINEBrochure.pdf (accessed 27.01.2020).
35. RenehaVisТМ. Available at: https://www.renehavis.com/Instructionfor-use (accessed 27.01.2020).
36. Hyalual®-ARTRO. Available at: https://www.uf.ua/wp-content/uploads/2017/05/The-outcomes-of-the-experimental-study_DiartArtro.pdf (accessed 27.01.2020).
37. Viscoplus®. Available at: https://visco-plus.ru/ (accessed 27.01.2020).
38. Nicholls M., Manjoo A., Shaw P., Niazi F., Rosen J. Rheological Properties of Commercially Available Hyaluronic Acid Products in the United States for the Treatment of Osteoarthritis Knee Pain. Clin Med Insights Arthritis Musculoskelet Disord. 2018; 11. DOI: 10.1177/1179544117751622.
39. Mendoza G., Alvarez A. I., Pulido M. M., Molina A. J., Merino G., Real R., Fernandes P., Prieto J. G. Inhibitory effects of different antioxidants on hyaluronan depolymerization. Carbohydr Res. 2007; 342(1): 96– 102. DOI: 10.1016/j.carres.2006.10.027.
40. Conrozier T., Mathieu P., Rinaudo M. Mannitol Preserves the Viscoelastic Properties of Hyaluronic Acid in an In Vitro Model of Oxidative Stress. Rheumatol Ther. 2014; (1): 45–54. DOI: 10.1007/s40744-014-0001-8.
41. Hyapro. Available at: http://www.hyapro.ru/ (accessed 27.01.2020).
42. Haridas N., Rosemary M. J. Effect of steam sterilization and biocompatibility studies of hyaluronic acid hydrogel for viscosupplementation. Polymer Degradation and Stability. 2019; 163: 220–227. DOI: 10.1016/j.polymdegradstab.2019.03.019.
43. O’Connell C. D., Onofrillo C., Duchi S., Li X., Zhang Y., Tian P. et al. Evaluation of sterilisation methods for bio-ink components: gelatin, gelatin methacryloyl, hyaluronic acid and hyaluronic acid methacryloyl. Biofabrication. 2019; 11(3): 035003. DOI: 10.1088/1758-5090/ab0b7c.
44. Krause W. E., Bellomo E. G., Colby R. H. Rheology of sodium hyaluronate under physiological conditions. Biomacromolecules. 2001; 2(1): 65– 69. DOI: 10.1021/bm0055798.
45. Haward S. J. Characterization of hyaluronic acid and synovial fluid in stagnation point elongational flow. Biopolymers. 2014; 101: 287– 305. DOI:10.1002/bip.22357.
46. Das S., Banquy X., Zappone B., Greene G. W., Jay G. D., Israelachvili J. N. Synergistic interactions between grafted hyaluronic acid and lubricin provide enhanced wear protection and lubrication. Biomacromolecules 2013; 14 (5): 1669–1677. DOI: 10.1021/bm400327a.
47. Forsey R. W., Fisher J., Thompson J., Stone M. H., Bell C., Ingham E. The effect of hyaluronic acid and phospholipid based lubricants on friction within a human cartilage damage model. Biomaterials. 2006; 27(26), 4581–4590. DOI: 10.1016/j.biomaterials.2006.04.018.
48. Yoon W. H., Lee K. H. Rheological properties and efficacy of the formulation of hyaluronic acid with tamarind seed polysaccharide for arthritis. Biorheology. 2019; 56(1): 31–38. Doi: 10.3233/BIR-190208.
49. Hanafy A. S., El-Ganainy S. O. Thermoresponsive Hyalomer intraarticular hydrogels improve monoiodoacetate-induced osteoarthritis in rats. International Journal of Pharmaceutics. 2020; 573: 118859. DOI: 10.1016/j.ijpharm.2019.118859.
50. Zhu L., Seror J., Day A. J., Kampf N., Klein J. Ultra-low friction between boundary layers of hyaluronan-phosphatidylcholine complexes. Acta Biomaterialia. 2017; 59: 283–292. DOI: 10.1016/j.actbio.2017.06.043.
51. Zerrillo L., Que I., Vepris O., Morgado L. N., Chan A., Bierau K., Li Y., Galli F., Bos E., Censi R. pH-responsive poly(lactide-co-glycolide) nanoparticles containing near-infrared dye for visualization and hyaluronic acid for treatment of osteoarthritis. J Control Release. 2019; 309: 265–276. DOI: 10.1016/j.jconrel.2019.07.031.
52. Ji X., Yan Y., Sun T., Zhang Q., Wang Y., Zhang M., Zhang M., Zhao X. Glucosamine sulphate-loaded distearoyl phosphocholine liposomes for osteoarthritis treatment: Combination of sustained drug release and improved lubrication. Biomaterials Science. 2019; 7(7): 2716–2728. DOI:10.1039/c9bm00201d.
Review
For citations:
Zagorulko Y.Y., Zagorulko E.Y. Features of Hyaluronic Acid Solutions for Intra-articular Introduction and Recent Trends in Their Development (Review). Drug development & registration. 2020;9(2):45-54. (In Russ.) https://doi.org/10.33380/2305-2066-2020-9-2-45-54