Preview

Drug development & registration

Advanced search

Approaches to the Development of a Low-dose Naltrexone Preparation in the Form of a Nasal Spray (Review)

https://doi.org/10.33380/2305-2066-2021-10-1-37-47

Abstract

Introduction. Naltrexone hydrochloride belongs to µ-opioid receptor antagonists and is widely used in the treatment of alcohol and drug addiction at an oral dose of 50 mg/day. It is also a blocker of other receptors – opioid growth factor and Toll-like factor, which is especially evident at doses of 1.5–5 mg/day. This allows it to be used to treat diseases associated with impaired immunity.

Text. To date, there is a significant amount of data indicating the effectiveness of naltrexone hydrochloride administered orally in doses from 1.5 to 5.0 mg per day for the treatment of significant diseases such as AIDS, cancer, autism, multiple sclerosis, etc. However, on the pharmaceutical market still lacks a drug that provides such doses. Due to the fact that oral administration of naltrexone is associated with its first-pass hepatic metabolism and the formation of significant amounts of substances that cause side effects of neuropsychiatric effects and gastrointestinal disorders, as well as the possible effect of naltrexone and its metabolites by other drugs, which in large amounts are used for these diseases, the creation of a parenteral dosage form is relevant.

Conclusion. The review presents current research in the field of low-dose naltrexone application, its mechanisms of action, and considers possible areas of application in medical practice. The disadvantages of oral administration are noted and an alternative route of administration such as intranasal is considered. Approaches to the development of a finished dosage form – nasal spray, are implemented when selecting the optimal content of the active substance and auxiliary components of the drug. The most promising is the creation of a drug based on thermoreversible polymers with a naltrexone hydrochloride content of up to 3,0 %.

About the Authors

Yu. M. Domnina
Federal State Budget Educational Institution of Higher Education "MIREA – Russian Technological University"; JSC "Institute of Pharmaceutical Technologies"
Russian Federation

Yuliya M. Domnina

86, Vernadsky av., Moscow, 119571

21/1, Skolkovskoye highway, Moscow, 121353



V. V. Suslov
Federal State Budget Educational Institution of Higher Education "MIREA – Russian Technological University"; JSC "Institute of Pharmaceutical Technologies"
Russian Federation

Vasiliy V. Suslov

86, Vernadsky av., Moscow, 119571

21/1, Skolkovskoye highway, Moscow, 121353



S. A. Kedik
Federal State Budget Educational Institution of Higher Education "MIREA – Russian Technological University"; JSC "Institute of Pharmaceutical Technologies"
Russian Federation

Stanislav A. Kedik

86, Vernadsky av., Moscow, 119571

21/1, Skolkovskoye highway, Moscow, 121353



P. O. Volkova
Federal State Budget Educational Institution of Higher Education "MIREA – Russian Technological University"
Russian Federation

Polina O. Volkova

86, Vernadsky av., Moscow, 119571



References

1. Elsegood L. The LDN Book: How a Little-Known Generic Drug – Low Dose Naltrexone – Could Revolutionize Treatment for Autoimmune Diseases, Cancer, Autism, Depression, and More. Chelsea Green Publishing; 2016. 217 p.

2. Sudakin D. Naltrexone: not just for opioids anymore. Journal of Medical Toxicology. 2016;12(1):71–75. DOI: 10.1007/s13181-015-0512-x.

3. Ivanets N. N., Vinnikova M. A. Experience of using Vivitrol (long-acting naltrexone in injections) in foreign practice. Kazanskij medicinskij zhurnal = Kazan medical journal. 2009;90(5):744–752. (In Russ.).

4. Jarvis B. P., Holtyn A.F., Subramaniam S., Tompkins D. A., Oga E. A., Bigelow G. E., Slverman K. Extended‐release injectable naltrexone for opioid use disorder: a systematic review. Addiction. 2018;113(7):1188–1209. DOI: 10.1111/add.14180.

5. Pullen L., Abbott A., Lamborn A., Harder S. A review of the use of oral and injectable naltrexone for alcohol and opioid addiction treatment. Mental Health Practice. 2020;23(3). DOI: 10.7748/mhp.2018.e1263.

6. Ramenskaya G. V., Shikh E. V., Arzamastsev A. P., Kukes V. G. Pharma-cokinetic study of the new domestic prolonged form naltrexone – depo-tablets “Prodetoxon”. Khimiko-farmatsevticheskiy zhurnal. 2005;39(1):3–5. (In Russ). DOI: 10.30906/0023-1134-2005-39-1-3-5.

7. Schopick J., Bihari B. MD: low-dose naltrexone for normalizing immune system function. Alternative therapies in health and medicine. 2013;19(2):56.

8. Smith J. P. Stock H., Bingaman S., Mauger D., Rogosnitzky M., Zagon I. Low-dose naltrexone therapy improves active Crohn’s disease. American Journal of Gastroenterology. 2007;102(4):820– 828. DOI: 10.1111/j.1572-0241.2007.01045.x.

9. Berkson B. M., Rubin D. M., Berkson A. J. Reversal of signs and symptoms of a B-cell lymphoma in a patient using only low-dose naltrexone. Integrative cancer therapies. 2007;6(3):293–296.

10. Zylicz Z., Stork N., Krajnik M. Severe pruritus of cholestasis in disseminated cancer: developing a rational treatment strategy. A case report. Journal of pain and symptom management. 2005;29(1):100–103. DOI: 10.1016/j.jpainsymman.2004.04.009.

11. Younger J., Noor N., McCue R., Mackey S. Low‐dose naltrexone for the treatment of fibromyalgia: findings of a small, randomized, double‐blind, placebo‐controlled, counterbalanced, crossover trial assessing daily pain levels. Arthritis & Rheumatism. 2013;65(2):529–538. DOI: 10.1002/art.37734.

12. Liu N., Ma. M., Qu N., Wang R., Chen H., Hu F., Gao S., Shan F. Low-dose naltrexone inhibits the epithelial-mesenchymal transition of cervical cancer cells in vitro and effects indirectly on tumor-associated macrophages in vivo. International Immunopharmacology. 2020;86:106718. DOI: 10.1016/j.intimp.2020.106718.

13. Wall M. E., Brine D. R., Perez-Reyes M. Metabolism and disposition of naltrexone in man after oral and intravenous administration. Drug Metabolism and Disposition. 1981;9(4):369–375. DOI: 0090-9556/81/0904-0369$02.00/0.

14. Meyer M. C., Straughn A. B., Lo M. W., Schary W. L., Whitney C. C. Bioequivalence, dose-proportionality, and pharmacokinetics of naltrexone after oral administration. The Journal of clinical psychiatry. 1984;45(9):15–19.

15. Oncken C., Van Kirk J., Kranzler H. R. Adverse effects of oral naltrexone: analysis of data from two clinical trials. Psychopharmacology. 2001;154(4):397–402. DOI: 10.1007/s002130000666.

16. Comer S. D., Collins E. D., Kleber H. D., Nuwayser E. S., Kerrigan J. H., Fischman M. W. Depot naltrexone: long-lasting antagonism of the effects of heroin in humans. Psychopharmacology. 2002;159(4):351–360. DOI: 10.1007/s002130100909.

17. Nave R., Schmitt H., Popper L. Faster absorption and higher systemic bioavailability of intranasal fentanyl spray compared to oral transmucosal fentanyl citrate in healthy subjects. Drug delivery. 2013;20(5):216–223. DOI: 10.3109/10717544.2012.762435.

18. Krieter P., Gyaw S., Chiang C.N., Crystal R., Skolnick Ph. Enhanced intranasal absorption of naltrexone by dodecyl maltopyranoside: implications for the treatment of opioid overdose. The Journal of Clinical Pharmacology. 2019;59(7):947–957. DOI: 10.1002/jcph.1384.

19. Younger J., Parkitny L., McLain D. The use of low-dose naltrexone (LDN) as a novel anti-inflammatory treatment for chronic pain. Clinical rheumatology. 2014;33(4):451–459. DOI: 10.1007/s10067-014-2517-2.

20. Agarwal D., Toljan K., Qureshi H., Vrooman B. Therapeutic value of naltrexone as a glial modulator. Arthritis Rheum. 2013;65(2):529–38.

21. Wang X., Zhang Y., Peng Y., Hutchinson M. R., Rice K. C., Yin H., Watkins L. R. Pharmacological characterization of the opioid inactive isomers (+)‐naltrexone and (+)‐naloxone as antagonists of toll‐like receptor 4. British journal of pharmacology. 2016;173(5):856–869. DOI: 10.1111/bph.13394.

22. Selfridge B. R., Wang X., Zhang Y., Yin H., Grace P. M., Watkins L. R., Ionescu D. F., Alpert J. E., Soskin D. P., Fava M. Structure–activity relationships of (+)-naltrexone-inspired toll-like receptor 4 (TLR4) antagonists. Journal of medicinal chemistry. 2015;58(12):5038–5052. DOI: 10.1021/acs.jmedchem.5b00426.

23. Hutchinson M. R., M. R., Zhang Y., Brown K., Coats B. D., Shridhar M., Sholar P. W., Patel S. J.,Crysdale N. Y., Harrison J. A., Maier S. F, Rice K. C., Watkins L. R. Non‐stereoselective reversal of neuro-pathic pain by naloxone and naltrexone: involvement of toll‐like receptor 4 (TLR4). European Journal of Neuroscience. 2008;28(1):20–29. DOI: 10.1111/j.1460-9568.2008.06321.x.

24. Okun E., Griffioen K. J., Mattson M. P. Toll-like receptor signaling in neural plasticity and disease. Trends in neurosciences. 2011;34(5):269–281. DOI: 10.1016/j.tins.2011.02.005.

25. Janković B. D., Radulović J. Enkephalins, brain and immunity: modulation of immune responses by methionine-enkephalin injected into the cerebral cavity. International journal of neuroscience. 1992;67(1-4):241–270. DOI: 10.3109/00207459208994788.

26. Rahn K. A., McLaughlin P. J., Zagon I. S. Prevention and diminished expression of experimental autoimmune encephalomyelitis by low dose naltrexone (LDN) or opioid growth factor (OGF) for an extended period: Therapeutic implications for multiple sclerosis. Brain research. 2011;1381:243–253. DOI: 10.1016/j.brainres.2011.01.036.

27. Zagon I. S., Donahue R., McLaughlin P. J. Targeting the opioid growth factor: opioid growth factor receptor axis for treatment of human ovarian cancer. Experimental Biology and Medicine. 2013;238(5):579–587. DOI: 10.1177/1535370213488483.

28. Rogosnitzky M., Finegold M. J., McLaughlin P. J., Zagon I. S. Opioid growth factor (OGF) for hepatoblastoma: a novel non-toxic treatment. Investigational new drugs. 2013;31(4):1066–1070. DOI: 10.1007/s10637-012-9918-3.

29. Donahue R. N., McLaughlin P. J., Zagon I. S. Low-dose naltrexone targets the opioid growth factor–opioid growth factor receptor pathway to inhibit cell proliferation: mechanistic evidence from a tissue culture model. Experimental Biology and Medicine. 2011;236(9):1036–1050. Doi:10.1258/ebm.2011.011121.

30. McLaughlin P. J., Zagon I. S. Duration of opioid receptor blockade determines biotherapeutic response. Biochemical pharmacology. 2015;97(3):236–246. DOI: 10.1016/j.bcp.2015.06.016.

31. Choubey A., Cirdhar K., Kar A. K., Kushwaha S., Yadav M. K., Ghosh D., Mondal P. Low dose naltrexone rescues inflammation and insulin resistance associated with hyperinsulinemia. Journal of Biological Chemistry. 2020;295(48):16359–16369. DOI: jbc.RA120.013484.

32. McLaughlin P. J., Sassani J. W., Zagon I. S. Naltrexone as a Novel Therapeutic for Diabetic Corneal Complications. Journal of Cellular Immunology. 2020;2(2):42–46.

33. Kariv R., Tiomny E., Grenshpon R., Dekel R., Waisman G., Ringel Y., Halpern Z. Low-dose naltreoxone for the treatment of irritable bowel syndrome: a pilot study. Digestive diseases and sciences. 2006;51(12):2128–2133. DOI: 10.1007/s10620-006-9289-8.

34. Braude M. C., Harris L. C., May E. L., Smith J. P., Stock H., Bingaman S., Mauger D., Rogosnitzky M., Zagon I. S. Low-dose naltrexone therapy improves active Crohn’s disease. American Journal of Gastroenterology. 2007;102(4):820–828. DOI: 10.1111/j.1572-0241.2007.01045.x

35. Donahue R. N. Pathways Targeted by the OGF-OGFr Axis are Determinants in the Progression of Human Ovarian Cancer. 2011. 333 p.

36. Smith J. P., Field D., Bingaman S., Evans R., Mauger D. Safety and tolerability of low dose naltrexone therapy in children with moderate to severe crohn’s disease: a pilot study. Journal of clinical gastroenterology. 2013;47(4):339. DOI: 10.1097/ MCG.0b013e3182702f2b.

37. Traore A. K., Thiero O., Dao S., Kounde F. F., Faye O., Cisse M., McCandless J. B., Zimmerman J. M., Coulibaly K., Diarra A., Keita M. S., Diallo S., Traore I. G., Koita O. Impact of low dose nalrexone (LDN) on antiretroviral therapy (ART) treated HIV+ adults in Mali: a single blind randomized clinical trial. Journal of AIDS and HIV Research. 2011;3(10):189–198. DOI: 10.5897/JAHR.9000030.

38. Ma M. Wang X., Liu N., Shan F., Feng Y. Low-dose naltrexone inhibits colorectal cancer progression and promotes apoptosis by increasing M1-type macrophages and activating the Bax/Bcl-2/ caspase-3/PARP pathway. International Immunopharmacology. 2020; 83:106388.

39. Aboalsoud A., El-Ghaiesh S. H., Elmonem F. F. A., Salem M. L., Rahman M. A. A. The effect of low-dose naltrexone on solid Ehrlich carcinoma in mice: The role of OGFr, BCL2, and immune response. International Immunopharmacology. 2020;78:106068. DOI: 10.1016/j.intimp.2020.106388.

40. Patten D. K., Schultz B. G., Berlau D. J. The safety and efficacy of low‐dose naltrexone in the management of chronic pain and inflammation in multiple sclerosis, fibromyalgia, Crohn’s disease, and other chronic pain disorders. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2018;38(3):382–389. DOI: 10.1002/phar.2086.

41. Ludwig M. D., Zagon I. S., McLaughlin P. J. Featured Article: Serum [Met5]-enkephalin levels are reduced in multiple sclerosis and restored by low-dose naltrexone. Experimental Biology and Medicine. 2017;242(15):1524–1533. DOI: 10.1177/1535370217724791.

42. Toljan K., Vrooman B. Low-Dose Naltrexone (LDN) – review of therapeutic utilization. Medical Sciences. 2018;6(4):82. DOI: 10.3390/medsci6040082.

43. Ekelem C., Juhasz M., Khera P., Mesinkovska N. A. Utility of naltrexone treatment for chronic inflammatory dermatologic conditions: a systematic review. JAMA dermatology. 2019;155(2):229–236. DOI: 10.1001/jamadermatol.2018.4093.

44. Kim P. S., Fishman M. A. Low-Dose Naltrexone for Chronic Pain: Update and Systemic Review. Current Pain and Headache Reports. 2020;24(10):1–8. DOI: 10.1007/s11916-020-00898-0.

45. Gomes M. S., Pereira J. A., Trocado V., Prata J. P., Teixera V, Pinheiro P. Vulvar Hailey–Hailey disease treated with low-dose naltrexone: case report and literature review. Archives of Gynecology and Obstetrics. 2020. P. 1–6. DOI: 10.1007/s00404-020-05705-0.

46. Parker C. E., Nguyen T. M., Segal D., MacDonald J. K., Chande N. Low dose naltrexone for induction of remission in Crohn’s disease. Cochrane Database of Systematic Reviews. 2018;4. DOI: 10.1002/14651858.CD010410.pub3.

47. Karpenko I. A., Rukhmakova O. A., Yarnykh T. G. Metodologiya farmacevticheskoj razrabotki myagkih lekarstvennyh sredstv dlya nazal'nogo primeneniya [Methodology for pharmaceutical development of soft drugs for nasal application]. Innovatsionnaya nauka, obrazovanie, proizvodstvo i transport: ekonomika, menedzhment, geografiya i geologiya, sel’skoe khozyaystvo, arkhitektura i stroitel’stvo, meditsina i farmatsevtika. 2018. 134-145 p. (In Russ.).

48. Gonzalez J. P., Brogden R. N. Naltrexone. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in the management of opioid dependence. Drugs 1988;35:192– 213. DOI: 10.2165/00003495-198835030-00002.

49. Jiang L. Gao L., Wang X., Tang L., Ma J. The application of mucoadhesive polymers in nasal drug delivery. Drug development and industrial pharmacy. 2010;36(3):323–336. DOI: 10.3109/03639040903170750.

50. Chonkar A., Nayak U., Udupa N. Smart polymers in nasal drug delivery. Indian Journal of Pharmaceutical Sciences. 2015;77(4):367.

51. Agrawal M., Saraf Sh., Saraf S., Dubey S. K., Puri A., Gupta U., Kesharwani P., Ravichandiran V., Kumar P., Nuidu V. G. M., Murty U. S., Ajazuddin A. A. Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. Journal of Controlled Release. 2020;327(10):235-265. DOI: 10.1016/j.jconrel.2020.07.044.

52. Anurova M. N., Bakhrushina E. O., Demina N. B. Review of contemporary gel-forming agents in the technology of dosage forms. Pharmaceutical Chemistry Journal. 2015;49(9):627–634. DOI: 10.1007/s11094-015-1342-5.

53. Mura P., Mennini N., Nativi C., Richichi B. In situ mucoadhesive-thermosensitive liposomal gel as a novel vehicle for nasal extended delivery of opiorphin. European Journal of Pharmaceutics and Biopharmaceutics. 2018;122:54–61. DOI: 10.1016/j.ejpb.2017.10.008.

54. Bhalerao A. V., Lonkar S. L., Deshkar S. S., Shirolkar S. V., Deshpande A. D. Nasal mucoadhesive in situ gel of ondansetron hydrochlorid. Indian Journal of Pharmaceutical Sciences. 2009;71(6):711.

55. Pund S., Rasve G., Borade G. Ex vivo permeation characteristics of venlafaxine through sheep nasal mucosa. European Journal of Pharmaceutical Sciences. 2013;48(1-2):195–201. DOI: 10.1016/j.ejps.2012.10.029.

56. Shinichiro H., Takatsuka Y., Tai M., Hiroyuki M. Absorption of drugs from the nasal mucosa of rat. International journal of pharmaceutics. 1981;7(4):317–325. DOI: 10.1016/0378-5173(81)90058-2.

57. Krukov A. I., Artemyeva-Karelova A. V. The rheological properties of nasal secretions. Methods of targeting. Rossijskaya otorinolaringologiya = Russian Otorhinolaryngology. 2013;6:87–91. (In Russ).

58. GF RF XIV OFS.1.4.1.0002.15«Aerozoli isprei». (In Russ).

59. Kuboyama Y., Sun of benzalkonium chloride in rats. The Journal of Toxicologicazuki K., Hara T. Nasal lesions induced by intranasal administratiol Sciences. 1997;22(2):153–160. DOI: 10.2131/jts.22.2_153.


Supplementary files

Review

For citations:


Domnina Yu.M., Suslov V.V., Kedik S.A., Volkova P.O. Approaches to the Development of a Low-dose Naltrexone Preparation in the Form of a Nasal Spray (Review). Drug development & registration. 2021;10(1):37-47. (In Russ.) https://doi.org/10.33380/2305-2066-2021-10-1-37-47

Views: 2832


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)