Preview

Drug development & registration

Advanced search

Development of a Gastro-retentive Dosage Form of a New Promising Anti-tuberculosis Drug Macozinone

https://doi.org/10.33380/2305-2066-2021-10-3-55-69

Abstract

Introduction. Due to increase in the frequency of detecting cases of tuberculosis caused by strains of mycobacteria with resistance not only to traditional, but also recently introduced into clinical circulation anti-tuberculosis drugs, it is urgent to search for and develop new drugs that can be effective against multidrug-resistant (MDR-TB) and extensively drug resistant (XDR-TB) strains. One of the most promising classes of such compounds are fluorine derivatives of benzothiazinones, and particularly compound PBTZ169 (INN macozinone). This antibiotic has a high specificity against mycobacteria tuberculosis (M. tuberculosis), inhibiting one of the key enzymes of cell wall synthesis. However, macozinone as an active pharmaceutical ingredient has significant features of physical and chemical properties that hinder the development of oral dosage forms based on it. It is classified as class IV by BCS and is characterized by a very low solubility and lipophilicity, a pronounced dependence of dissolution rate on the pH of the medium, and very low bioavailability when taken orally.

Aim. To substantiate the target profile, critical quality attributes and to develop a prototype of an oral dosage form with modified release of macozinone, allowing to maximize its pharmacological activity.

Materials and methods. Using pharmaceutical substance macozinone hydrochloride and various excipients, experimental tablets with a dosage of 500 mg macozinone were developed. The influence of the composition of the media and the added excipients on the solubility of macozinone in various biorelevant media, the degree of swelling in the liquid and the degree of mucoadhesion of the experimental tablets to the mucus of the pig stomach were evaluated. The HPLC method was used to evaluate the kinetics of the release of the active substance.

Results and discussion. In this work, the expediency of creating macozinone-containing gastro-retentive dosage forms with a slow release of the active substance, the delay mechanism of which is provided by swelling and increased adhesion to the gastric mucosa, has been substantiated. Various tablet samples were experimentally tested in which the modification of the release of the active substance and the degree of swelling and mucoadhesion were varied by introducing various excipients into the formulations, including known swelling and bioadhesive matrix agents.

Conclusion. According to the results of the experiments, samples of high-dose (500 mg) swellable and mucoadhesive tablets created by the technology of two-stage granulation with the inclusion of macozinone - hydroxypropyl-beta-cyclodextrin mixtures in the primary granules and introduction of combinations of soluble and insoluble hydrophilic matrix agents into the intergranular space were recognized as the most promising for subsequent pharmacokinetic studies.

About the Authors

V. G. Nesterenko
N.F. Gamaleya Federal Research Center for Epidemiology & Microbiology
Russian Federation

Vladimir G. Nesterenko.

18, Gamalei str., Moscow, 123098.



R. N. Bolgarin
LLC "NEARMEDIC PHARMA"
Russian Federation

Roman N. Bolgarin.

12, Aviakonstruktora Mikoyana str., Moscow, 125252.



B. A. Rudoy
LLC "NEARMEDIC PHARMA"
Russian Federation

Boris A. Rudoy.

12, Aviakonstruktora Mikoyana str., Moscow, 125252.



D. K. Salakhetdinov
LLC "NovaMedica Innotech"
Russian Federation

Damir K. Salakhetdinov.

room I/606, building 5, building 5, 42, Volgogradskiy prospect, Moscow, 109316.



Yu. G. Kazaishvili
LLC "NEARMEDIC PHARMA"
Russian Federation

Yuri G. Kazaishvili.

12, Aviakonstruktora Mikoyana str., Moscow, 125252.



V. S. Scherbakova
LLC "NEARMEDIC PHARMA"
Russian Federation

Victoria S. Scherbakova.

12, Aviakonstruktora Mikoyana str., Moscow, 125252.



N. A. Nikitina
LLC "NEARMEDIC PHARMA"
Russian Federation

Natalia A. Nikitina.

12, Aviakonstruktora Mikoyana str., Moscow, 125252.



Yu. V. Medvedev
LLC "CPHA"; I. M. Sechenov First MSMU of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

Yuri V. Medvedev.

20/3, Nauchny proezd, Moscow, 117246

8/2, Trubetskaya str., Moscow, 119991



E. N. Fisher
LLC "CPHA"; I.M. Sechenov First MSMU of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

Elizaveta N. Fisher.

20/3, Nauchny proezd, Moscow, 117246; 8/2, Trubetskaya str., Moscow, 119991.



E. A. Malashenko
I.M. Sechenov First MSMU of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

Evgeniya A. Malashenko.

8/2, Trubetskaya str., Moscow, 119991.



I. E. Shohin
LLC "CPHA"
Russian Federation

Igor E. Shohin.

20/3, Nauchny proezd, Moscow, 117246.



References

1. World Health Organization. "Global tuberculosis report 2020: executive summary". Geneva; 2020.

2. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Geneva: World Health Organization; 2019.

3. Polsfuss S., Hofmann-Thiel S., Merker M., Krieger D., Niemann S., Russmann H., Schonfeld N., Hoffmann H., Kranzer K. Emergence of low-level delamanid and bedaquiline resistance during extremely drug-resistant tuberculosis treatment. Clinical Infectious Diseases. 2019;69(7):1229-1231. DOI: 10.1093/cid/ciz074.

4. Schena E., Nedialkova L., Borroni E., Battaglia S., Cabibbe A. M., Niemann S., Utpatel C., Merker M., Trovato A., Hofmann-Thiel S., Hoffmann H., Cirillo D. M. Delamanid susceptibility testing of Mycobacterium tuberculosis using the resazurin microtitre assay and the BACTEC™ MGIT™ 960 system. Journal of Antimicrobial Chemotherapy. 2016;71(6):1532-1539. DOI: 10.1093/jac/dkw044.

5. Hoffmann H., Kohl T. A., Hofmann-Thiel S., Merker M., Beckert P., Jaton K., Nedialkova L., Sahalchyk E., Rothe T., Keller P. M., Niemann S. Delamanid and bedaquiline resistance in Mycobacterium tuberculosis ancestral Beijing genotype causing extensively drug-resistant tuberculosis in a Tibetan refugee. American Journal of Respiratory and Critical Care Medicine. 2016;193(3):337-340. DOI: 10.1164/rccm.201502-0372LE.

6. Battaglia S., Spitaleri A., Cabibbe A. M., Meehan C. J., Utpatel C., Ismail N., Tahseen S., Skrahina A., Alikhanova N., Kamal S. M. M., Barbova A., Niemann S., Groenheit R., Dean A. S., Zignol M., Rigouts L., Cirillo D. M. Characterization of genomic variants associated with resistance to bedaquiline and delamanid in naive Mycobacterium tuberculosis clinical strains. Journal of Clinical Microbiology. 2020;58(11):e01304-e01320. DOI: 10.1128/JCM.01304-20.

7. Balganesh T. S., Alzari P. M., Cole S. T. Rising standards for tuberculosis drug development. Trends in Pharmacological Sciences. 2008;29(11):576-581. DOI: 10.1016/j.tips.2008.08.001.

8. Tiberi S., Munoz-Torrico M., Duarte R., Dalcolmo M., D'Ambrosio L., Migliori G.-B. New drugs and perspectives for new anti-tuberculosis regimens. Pulmonology. 2018;24(2):86-98. DOI: 10.1016/j.rppnen.2017.10.009.

9. Kumar D., Negi B., Rawat D. S. The anti-tuberculosis agents under development and the challenges ahead. Future Medicinal Chemistry. 2015;7(15):1981-2003. DOI: 10.4155/fmc.15.128.

10. Makarov V., Lechartier B., Zhang M., Neres J., Sar A. M., Raad-sen S. A., Hartkoorn R. C., Ryabova O. B., Vocat A., Decosterd L. A., Widmer N., Buclin T., Bitter W., Andries K., Pojer F., Dyson P. J., Cole S. T. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Molecular Medicine. 2014;6(3):372-383. DOI: 10.1002/emmm.201303575.

11. Shi J., Lu J., Wen S., Zong Z., Huo F., Luo J., Liang Q., Li Y., Huang H., Pang Y. In vitro activity of PBTZ169 against multiple Mycobacterium species. Antimicrobial Agents and Chemotherapy. 2018;62(11):e01314-e01318. DOI: 10.1128/AAC.01314-18.

12. Gao C., Peng C., Shi Y., You X., Ran K., Xiong L., Ye T.-H., Zhang L., Wang N., Zhu Y., Liu K., Zuo W., Yu L., Wei Y. Benzothiazinethione is a potent preclinical candidate for the treatment of drug-resistant tuberculosis. Scientific Reports. 2016;6(1). DOI: 10.1038/srep29717.

13. Singh R., Dwivedi S. P., Gaharwar U. S., Meena R., Rajamani P., Prasad T. Recent updates on drug resistance in Mycobacterium tuberculosis. Journal of Applied Microbiology. 2020;128(6):1547-1567. DOI: 10.1111/jam.14478.

14. Chernousova L. N., Аndreevskaya S. N., Smirnova T G., Larionova E. E., Аndrievskaya I. Yu., Shevkun N. А. In vitro action of the drug candidate of PBTZ169, hydrochloride action in respect of clinical strains of Mycobacterium tuberculosis with extensive drug resistance. Tuberkuljoz i bolezni legkih = Tuberculosis and Lung Diseases. 2016;94(9):73-79. (In Russ.) DOI: 10.21292/2075-1230-2016-94-9-73-79.

15. Chernousova L. N., Andreevskaya S. N., Smirnova T. G., Larionova E. E., Ivakhnenko O. I., Novoselova E. A., Shevkun N. A. Drug-resistant tuberculosis: the prospects for accelerated diagnostics and chemotherapy. Bakteriologiya = Bacteriology. 2017;2(1):25-34. (In Russ.) DOI: 10.20953/2500-1027-2017-1-25-34.

16. McIlleron H., Chirehwa M. T. Current research toward optimizing dosing of first-line antituberculosis treatment. Expert Review of Anti-in-fectiveTherapy. 2019;17(1):27-38. DOI: 10.1080/14787210.2019.1555031.

17. Wang T., Tang Y., Yang Y., An Q., Sang Z., Yang T., Liu P., Zhang T., Deng Y., Luo Y. Discovery of novel anti-tuberculosis agents with pyrrolo[1,2-a]quinoxaline-based scaffold. Bioorganic & Medicinal Chemistry Letters. 2018;28(11):2084-2090. DOI: 10.1016/j.bmcl.2018.04.043.

18. Khokhlov A. L., Mariandyshev A. O., Shcherbakova V. S., Ozerova I. V., Kazaishvili Yu. G., Igumnova O. V., Bolgarina A. A., Rudoy B. A. Effect of physicochemical properties on the pharmacokinetic parameters of the new representative of benzothiazinones antituberculosis drug macozinone. Terapevticheskiy arkhiv = Therapeutic archive. 2020;92(12):165-171. (In Russ.) DOI: 10.26442/00403660.2020.12.200482.

19. Mariandyshev A. O., Khokhlov A. L., Smerdin S. V., Shcherbakova V. S., Igumnova O. V., Ozerova I. V., Bolgarina A. A., Nikitina N. A. The main results of clinical trials of the efficacy, safety and pharmacokinetics of the perspective anti-tuberculosis drug makozinone (PBTZ169). Terapevticheskiy arkhiv = Therapeutic archive. 2020;92(3):61-72. (In Russ.) DOI: 10.26442/00403660.2020.03.000621.

20. Carvalho F. C., Bruschi M. L., Evangelista R. C., Gremiao M. P. D. Mucoadhesive drug delivery systems. Brazilian Journal of Pharmaceutical Sciences. 2010;46(1);1-17. DOI: 10.1590/S1984-82502010000100002.

21. Reddy M. V., Vijayavani Ch. S., Rao V. U. M. Formulation and evaluation of gabapentin mucoadhesive gastro retentive tablets. Int J Pharm Anal. Res. 2012;2(4):151-163.

22. Tripathi J., Thapa P., Maharjan R., Jeong S. H. Current state and future perspectives on gastroretentive drug delivery systems. Pharmaceutics. 2019;11(4). DOI: 10.3390/pharmaceutics11040193.

23. Mandal U. K., Chatterjee B., Senjoti F. G. Gastro-retentive drug delivery systems and their in vivo success: a recent update. Asian Journal of Pharmaceutical Sciences 2016;11(5):575-584 DOI: 10.1016/j.ajps.2016.04.007.

24. Khosla R., Davis S. S. The effect of tablet size on the gastric emptying of non-disintegrating tablets. International journal of pharmaceutics. 1990;62(2-3):R9-R1 1.

25. Berner B., Louie-Helm J. Tablet shapes to enhance gastric retention of swellable controlled-release oral dosage forms. United States patent US6488962B1. 2002 Dec. 3.

26. Dehghan M., Kha F. Gastroretentive drug delivery systems: a patent perspective. International Journal of Health Research. 2009:2(1). DOI: 10.4314/ijhr.v2i1.55385.

27. Pal P., Sharma V., Singh L. A review on floating type gastroretentive drug delivery system. International Research Journal of Pharmacy. 2012;3(4):37-43.

28. Zate S. U., Kothawade P. I., Mahale G. H., Kapse K. P., Anantwar S. P. Gastro retentive bioadhesive drug delivery system: A review. Int J Pharm Res. 2010;2:1227-1235.

29. Rasheed A. Cyclodextrins as drug carrier molecule: a review. Scientia Pharmaceutica. 2008;76(4):567-598. DOI: 10.3797/scipharm.0808-05.

30. Popielec A., Loftsson T. Effects of cyclodextrins on the chemical stability of drugs. International Journal of Pharmaceutics. 2017;531(2):532-542. DOI: 10.1016/j.ijpharm.2017.06.009.

31. Brewster M.E., Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Advanced Drug Delivery Reviews. 2007;59(7):645-666. DOI: 10.1016/j.addr.2007.05.012.

32. Sankar R., Jain S.K. Development and characterization of gastroretentive sustained-release formulation by combination of swelling and mucoadhesive approach: a mechanistic study. Drug Design, Development and Therapy. 2013;7:1455-1469. DOI: 10.2147/DDDT.S52890.

33. Balasubramaniam J., Bee T. Influence of superdisintegrants on the rate of drug dissolution from oral solid dosage forms. Pharmaceutical Industry. 2010;4(21):91-99.

34. Saharan V., Kukkar V., Kataria M., Gera M., Choudhury P. Dissolution enhancement of drugs. Part I: technologies and effect of carriers. International Journal of Health Research. 2010;2(2):107-124. DOI: 10.4314/ijhr.v2i2.55401.

35. Spence J. K., Bhattachar S. N., Wesley J. A., Martin P. J., Babu S. R. Increased dissolution rate and bioavailability through comicronization with microcrystalline cellulose. Pharmaceutical Development and Technology. 2005;10(4):451-60. DOI: 10.1080/10837450500299636.

36. Khan A., Iqbal Z., Niaz N. Evaluation of the effect of co-grinding on dissolution rate of poor water soluble drug (clarithromycin). MOJ Drug Design Development & Therapy. 2018;2(4):232-237. DOI: 10.15406/mojddt.2018.02.00052.

37. Trache D., Hussin M. H., Chuin C. T. H., Sabar S., Fazita M. R. N., Taiwo O. F. A., Hassan T. M., Haafiz M. K. M. Microcrystalline cellulose: Isolation, characterization and bio-composites application - A review. International Journal of Biological Macromolecules. 2016;93:789-804. DOI: 10.1016/j.ijbiomac.2016.09.056.

38. Masson M., Loftsson T., Masson G., Stefansson E. Cyclodextrins as permeation enhancers: some theoretical evaluations and in vitro testing. Journal of Controlled Release. 1999;59(1):107-118. DOI: 10.1016/s0168-3659(98)00182-5.

39. Loftsson T., Vogensen S.B., Brewster M.E., Konráðsdóttir F. Effects of cyclodextrins on drug delivery through biological membranes. Journal of Pharmaceutical Sciences. 2007;96(10):2532-2546. DOI: 10.1002/jps.20992.

40. Nakanishi K., Nadai T., Masada M., Miyajima K. Effect of cyclodextrins on biological membrane. II. Mechanism of enhancement on the intestinal absorption of non-absorbable drug by cyclodextrins. Chemical and Pharmaceutical Bulletin. 1992;40(5):1252-1256. DOI: 10.1248/cpb.40.1252.


Supplementary files

1. Графический абстракт
Subject
Type Исследовательские инструменты
View (1MB)    
Indexing metadata ▾

Review

For citations:


Nesterenko V.G., Bolgarin R.N., Rudoy B.A., Salakhetdinov D.K., Kazaishvili Yu.G., Scherbakova V.S., Nikitina N.A., Medvedev Yu.V., Fisher E.N., Malashenko E.A., Shohin I.E. Development of a Gastro-retentive Dosage Form of a New Promising Anti-tuberculosis Drug Macozinone. Drug development & registration. 2021;10(3):55-69. https://doi.org/10.33380/2305-2066-2021-10-3-55-69

Views: 2193


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)