Preview

Drug development & registration

Advanced search

Antioxidant Activity of Silver-containing Bionanocompositions Based on Humic Substances in Cell Culture

https://doi.org/10.33380/2305-2066-2021-10-4-46-53

Abstract

Introduction. Silver nanoparticles are promising agents for suppressing resistant strains of microorganisms and accelerating the purulent wounds healing. Oxidative stress disrupts normal wound healing processes, which leads to the formation of chronic non-healing wounds. Therefore, the determination of the ability of new wound healing agents to decrease the production of reactive oxygen species is a relevant task.

Aim. The aim of the current study was to investigate the effect of silver-containing bionanocompositions based on humic substances on the basal and tert-butyl hydroperoxide-stimulated production of reactive oxygen species at the normal fibroblasts 3T3-L1 cell culture in vitro.

Materials and methods. The study was carried out on 7 samples of initial humic substances and biomaterials with silver nanoparticles synthesized in the Laboratory of Natural Humic Systems, Faculty of Chemistry, Moscow State University named after M. V. Lomonosov. The intracellular production of reactive oxygen species was assessed using a 2,7-dichlorodihydrofluorescein diacetate fluorescent probe. Cells were cultured with samples for 24 h; tret-butyl hydroperoxide was used to stimulate the production of reactive oxygen species. Detection was performed fluorometrically using a microplate reader.

Results and discussion. The most pronounced antioxidant activity was demonstrated by three samples of biomaterials with silver nanoparticles ultradispersed in humic substances matrices (CHS-AgNPs, CHP-AgNPs and CHE-AgNPs), which allows us to consider them as the most promising pharmaceutical agents for the treatment of purulent-inflammatory processes. The most probable mechanism of the high antioxidant activity of the studied biomaterials in relation to intracellular reactive oxygen species is the intrinsic activity of humic substances to bind reactive oxygen species, while silver nanoparticles in biomaterials catalyze the reduction processes of their interaction with reactive oxygen species.

Conclusion. For the studied samples of biomaterials with silver nanoparticles ultradispersed in matrices of humic substances pronounced antioxidant activity was shown. Together with antibacterial properties, it makes it possible to consider them as potential agents for purulent wounds healing accelerating.

About the Authors

E. E. Buyko
Siberian State Medical University, SSMU; The National Research Tomsk Polytechnic University
Russian Federation

Evgeny E. Buyko

2, Moskovsky tract, Tomsk, Tomsk region, 634050; 30, Lenina ave., Tomsk, 634034



M. V. Zykova
Siberian State Medical University, SSMU
Russian Federation

Maria V. Zykova

2, Moskovsky tract, Tomsk, Tomsk region, 634050



V. V. Ivanov
Siberian State Medical University, SSMU
Russian Federation

Vladimir V. Ivanov

2, Moskovsky tract, Tomsk, Tomsk region, 634050



K. A. Bratishko
Siberian State Medical University, SSMU; The National Research Tomsk Polytechnic University
Russian Federation

Kristina A. Bratishko

2, Moskovsky tract, Tomsk, Tomsk region, 634050; 30, Lenina ave., Tomsk, 634034



A. A. Ufandeev
Siberian State Medical University, SSMU
Russian Federation

Alexander A. Ufandeev

2, Moskovsky tract, Tomsk, Tomsk region, 634050



I. O. Grigorieva
Lomonosov Moscow State University
Russian Federation

Irina O. Grigorieva

1, Leninskie gory, Moscow, 119991



A. V. Tsupko
Siberian State Medical University, SSMU
Russian Federation

Andrey V. Tsupko

2, Moskovsky tract, Tomsk, Tomsk region, 634050



D. A. Mikhalyov
Siberian State Medical University, SSMU
Russian Federation

Dmitry A. Mikhalyov

2, Moskovsky tract, Tomsk, Tomsk region, 634050



I. V. Perminova
Lomonosov Moscow State University
Russian Federation

Irina V. Perminova

1, Leninskie gory, Moscow, 119991



M. V. Belousov
Siberian State Medical University, SSMU; The National Research Tomsk Polytechnic University
Russian Federation

Mikhail V. Belousov

2, Moskovsky tract, Tomsk, Tomsk region, 634050; 30, Lenina ave., Tomsk, 634034



References

1. Anjum S., Hashim M., Malik S. A., Khan M., Lorenzo J. M., Abbasi B. H., Hano, C. Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment. Cancers. 2021;13(18):4570. DOI: 10.3390/cancers13184570.

2. Abbasi E., Milani M., Fekri Aval S., Kouhi M., Akbarzadeh A., Tayefi Nasrabadi H., Nikasa P., Joo S.W., Hanifehpour Y., Nejati-Koshki K., Samiei M. Silver nanoparticles: synthesis methods, bio-applications and properties. Critical reviews in microbiology. 2016;42(2):173-180. DOI: 10.3109/1040841X.2014.912200.

3. Paladini F., Pollini M. Antimicrobial silver nanoparticles for wound healing application: progress and future trends. Materials. 2019;12(16):2540. DOI: 10.3390/ma12162540.

4. GhavamiNejad A., Park C. H., Kim C. S. In situ synthesis of antimicrobial silver nanoparticles within antifouling zwitterionic hydrogels by catecholic redox chemistry for wound healing application. Biomacromolecules. 2016;17(3):1213-1223. DOI: 10.1021/acs.biomac.6b00039.

5. Tian X., Jiang X., Welch C., Croley T. R., Wong T. Y., Chen C., Fan S., Chong Y., Li R., Ge C., Chen C., Yin J. J. Bactericidal effects of silver nanoparticles on lactobacilli and the underlying mechanism. ACS applied materials & interfaces. 2018;10(10):8443-8450. DOI: 10.1021/acsami.7b17274.

6. Netala V. R., Bethu M. S., Pushpalatha B., Baki V. B., Aishwarya S., Rao J. V., Tartte V. Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of their antioxidant and anticancer activities. International journal of nanomedicine. 2016;11:5683. DOI: 10.2147/IJN.S112857.

7. Comino-Sanz I. M., Lopez-Franco M. D., Castro B., Pancorbo-Hidalgo P. L. The Role of Antioxidants on Wound Healing: A Review of the Current Evidence. Journal of Clinical Medicine. 2021;10(16):3558. DOI: 10.3390/jcm10163558.

8. Velnar T., Bailey T., Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. Journal of International Medical Research. 2009;37(5):1528-1542. DOI: 10.1177/147323000903700531.

9. Rosenbaum A. J., Banerjee S., Rezak K. M., Uhl R. L. Advances in wound management. Journal of the American Academy of Orthopaedic Surgeons. 2018;26(23):833-843. DOI: 10.5435/JAAOS-D-17-00024.

10. Cano Sanchez M., Lancel S., Boulanger E., Neviere R. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: a systematic review. Antioxidants (Basel). 2018;7(8):98. DOI: 10.3390/antiox7080098.

11. Rodriguez P. G., Felix F. N., Woodley D. T., Shim E. K. The role of oxygen in wound healing: a review of the literature. Dermatologic surgery. 2008;34(9):1159-1169. DOI: 10.1177/147323000903700531.

12. Bryan N., Ahswin H., Smart N., Bayon Y., Wohlert S., Hunt J. A. Reactive oxygen species (ROS)-a family of fate deciding molecules pivotal in constructive inflammation and wound healing. Eur Cell Mater. 2012;24:249-265. DOI: 10.22203/ecm.v024a18.

13. Dunnill C., Patton T., Brennan J., Barrett J., Dryden M., Cooke J., Leaper D., Georgopoulos N. T. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. International wound journal. 2017;14(1):89-96. DOI: 10.1111/iwj.12557.

14. Musino D., Devcic J., Lelong C., Luche S., Rivard C., Dalzon B., Land-rot G., Rabilloud T., Capron, I. Impact of Physico-Chemical Properties of Cellulose Nanocrystal/Silver Nanoparticle Hybrid Suspensions on Their Biocidal and Toxicological Effects. Nanomaterials. 2021;11(7):1862. DOI: 10.3390/nano11071862.

15. Alahmad A., Feldhoff A., Bigall N. C., Rusch P., Scheper T., Walter J. G. Hypericum perforatum L.-mediated green synthesis of silver nanoparticles exhibiting antioxidant and anticancer activities. Nanomaterials. 2021;11(2);487. DOI: 10.3390/nano11020487.

16. Nguyen T. H. A., Nguyen V. C., Phan T. N. H., Le V. T., Vasseghian Y., Trubitsyn M. A., Nguyen A. T., Chau T. P., Doan V. D. Novel biogenic silver and gold nanoparticles for multifunctional applications: Green synthesis, catalytic and antibacterial activity, and colorimetric detection of Fe (III) ions. Chemosphere. 2021;287(3):132271. DOI: 10.1016/j.chemosphere.2021.132271.

17. Aboyewa J. A., Sibuyi N. R., Meyer M., Oguntibeju O. O. Green Synthesis of Metallic Nanoparticles Using Some Selected Medicinal Plants from Southern Africa and Their Biological Applications. Plants. 2021;10(9);1929. DOI: 10.3390/plants10091929.

18. Zykova M. V., Schepetkin I. A., Belousov M. V., Krivoshchekov S. V., Logvinova L. A., Bratishko K. A., Yusubov M. S., Romanenko S. V., Quinn M. T. Physicochemical characterization and antioxidant activity of humic acids isolated from peat of various origins. Molecules. 2018;23(4):753. DOI: 10.3390/molecules23040753.

19. Orlov D. S. Humus acids of soils. Rotterdam: AA Balkema; 1985. 378 p.

20. Schepetkin I., Khlebnikov A., Kwon B. S. Medical drugs from humus matter: focus on mumie. Drug development research. 2002;57(3):140-159. DOI: 10.1002/ddr.10058.

21. Trofimova E. S., Zykova M. V., Ligacheva A. A., Sherstoboev E. Y., Zhdanov V. V., Belousov M. V., Krivoshchekov S. V., Danilets M. G., Dygai A. M. Influence of humic acids extracted from peat by different methods on functional activity of macrophages in vitro. Bulletin of experimental biology and medicine. 2017;162(6):741-745. DOI: 10.1007/s10517-017-3702-5.

22. Joone G. K., Dekker J., van Rensburg C. E. J. Investigation of the immunostimulatory properties of oxihumate. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2003;58(3-4):263-267. DOI: 10.1515/znc-2003-3-421.

23. Zharkova L. P., Knyazeva I. R., Ivanov V. V., Bolshakov M. A., Kutenkov O. P., Rostov V. V. Influence of repetitively pulsed X-ray and microwave radiation on the level of peroxides in isolated hepatocytes. Bulletin of Tomsk State University. 2010;333:161-163. (In Russ.)

24. Laghrib F., Houcini H., Khalil F., Liba A., Bakasse M., Lahrich S., El Mhammedi M. A. Synthesis of Silver Nanoparticles Using Chitosan as Stabilizer Agent: Application towards Electrocatalytical Reduction of p-Nitrophenol. ChemistrySelect. 2020;5(3):1220-1227. DOI: 10.1002/slct.201903955.

25. Nasirizadeh N., Shekari Z., Dehghani M., Makarem S. Delphinidin immobilized on silver nanoparticles for the simultaneous determination of ascorbic acid, noradrenalin, uric acid, and tryptophan. Journal of food and drug analysis. 2016;24(2):406-416. DOI: 10.1016/j.jfda.2015.11.011.

26. Ha D. T., Oh J., Khoi N. M., Dao T. T., Dung L. V., Do T. N. Q., Lee S. M., Jang T. S., Jeong G., Na M. In vitro and in vivo hepatoprotective effect of ganodermanontriol against t-BHP-induced oxidative stress. Journal of ethnopharmacology. 2013;150(3):875-885. DOI: 10.1016/j.jep.2013.09.039.

27. Ye H., Luo J., Hu D., Yang S., Zhang A., Qiu Y., Ma X., Wang J., Hou J., Bai J. Total Flavonoids of Crocus sativus Petals Release tert-Butyl Hydroperoxide-Induced Oxidative Stress in BRL-3A Cells. Oxidative Medicine and Cellular Longevity. 2021;2021:1-15. DOI: 10.1155/2021/5453047.

28. Zavodnik I. B. Reactive oxygen species generation and B14 cells morphological transformations under oxidative treatment by organic hydroperoxide. Izvestiya Natsional'noy akademii nauk Belaru-si. Seriya biologicheskikh nauk = Proceedings of the National Academy of Sciences of Belarus. Biological Series. 2015;3:104-108. (In Russ.)

29. Bedlovicova Z., Strapac I., Balaz M., Salayova A. A brief overview on antioxidant activity determination of silver nanoparticles. Molecule. 2020;25(14):3191. DOI: 10.3390/molecules25143191.

30. Aeschbacher M., Graf C., Schwarzenbach R. P., Sander M. Antioxidant properties of humic substances. Environ Sci Technol. 2012;1;46(9):4916-4925. DOI: 10.1021/es300039h.

31. Bratishko K. A., Zykova M. V., Ivanov V. V., Buyko E. E., Drygunova L. A., Perminova I. V., Belousov M. V. Peat humic acids-prospective biologically active substances with antioxidant activity for the development of protective agents. Khimiya Rastitel'nogo Syr'ya. 2021;1:287-298. (In Russ.) DOI: 10.14258/jcprm.2021018784.

32. Klavins M., Sire J. Variations of humic acids properties within peat profiles. Mires and peat. 2010;4:175-197.

33. Vijilvani C., Bindhu M. R., Frincy F. C., AlSalhi M. S., Sabitha S., Saravanakumar K., Devanesan S., Umavedi M., Aljaafreh M. J., Atif M. Antimicrobial and catalytic activities of biosynthesized gold, silver and palladium nanoparticles from Solanum nigurum leaves. Journal of Photochemistry and Photobiology B: Biology. 2020;202:111713. DOI: 10.1016/j.jphotobiol.2019.111713.

34. Du L., Xu Q., Huang M., Xian L., Feng J. X. Synthesis of small silver nanoparticles under light radiation by fungus Penicillium oxalicum and its application for the catalytic reduction of methylene blue. Materials Chemistry and Physics. 2015;160:40-47. DOI: 10.1016/j.matchemphys.2015.04.003.

35. Hu D., Yang X., Chen W., Feng Z., Hu C., Yan F., Chen X., Qu D., Chen Z. Rhodiola rosea Rhizome Extract-Mediated Green Synthesis of Silver Nanoparticles and Evaluation of Their Potential Antioxidant and Catalytic Reduction Activities. ACS omega. 2021;6(38):24450-24461. DOI: 10.1021/acsomega.1c02843.

36. Bharadwaj K. K., Rabha B., Pati S., Choudhury B. K., Sarkar T., Gogoi S. K., Kakati N., Baishya D., Kari Z. A., Edinur H. A. Green Synthesis of Silver Nanoparticles Using Diospyros malabarica Fruit Extract and Assessments of Their Antimicrobial, Anticancer and Catalytic Reduction of 4-Nitrophenol (4-NP). Nanomaterials. 2021;11(8):1999. DOI: 10.1021/acsomega.1c02843.


Supplementary files

1. Графический абстракт
Subject
Type Исследовательские инструменты
View (1MB)    
Indexing metadata ▾

Review

For citations:


Buyko E.E., Zykova M.V., Ivanov V.V., Bratishko K.A., Ufandeev A.A., Grigorieva I.O., Tsupko A.V., Mikhalyov D.A., Perminova I.V., Belousov M.V. Antioxidant Activity of Silver-containing Bionanocompositions Based on Humic Substances in Cell Culture. Drug development & registration. 2021;10(4):46-53. (In Russ.) https://doi.org/10.33380/2305-2066-2021-10-4-46-53

Views: 1253


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)