Preview

Drug development & registration

Advanced search

The Use of Ultrasound in the Extraction of Biologically Active Compounds from Plant Raw Materials, Used or promising for Use in Medicine (Review)

https://doi.org/10.33380/2305-2066-2021-10-4-96-116

Abstract

Introduction. This review examines the current state of technology for ultrasonic isolation of biologically active components from medicinal vegetal raw materials. The main emphasis is placed on "green" technologies that intensify the processes of isolation of components such as flavonoids.

Text. Modern technologies imply the use of combined methods, including, in addition to ultrasound, significant grinding of raw materials before the extraction process, the use of supercritical solvents (liquefied gases) under excessive pressure. The effect of ultrasound power and temperature on the output of the extracted components was also considered.

Conclusion. 1. To increase the yield of biologically active compounds from plant raw materials among various physical methods of extraction intensification, the use of ultrasound dominates. 2. Ultrasonic extraction can be divided into several main types: extraction in an ultrasonic bath, the use of submersible ultrasonic emitters, as well as the combination of ultrasonic extraction with additional types of influence. 3. In the literature, examples of the use of ultrasonic extraction for the isolation of phenolic compounds are most fully presented, it being noted that the parameters need to be selected individually for each individual plant. 4. The power of ultrasound and the nature of the extractant can affect the course of oxidative processes in the extract, and such phenomena are characteristic not only for too high capacities, but also for low ones. 5. Ultrasound can significantly increase the yield of biologically active compounds even in aqueous extraction of fresh raw materials. 6. The spectrum of extractants selection for ultrasonic extraction of plant raw materials is quite large. Both organic solvents (ethanol, methanol, ethyl acetate, acetone) and water can be used, as well as mixtures of various extractants.

About the Authors

A. A. Elapov
Peoples Friendship University of Russia (RUDN University)
Russian Federation

Alexander A. Elapov

6, Mikluho-Maklaya str., Moscow, 117198



N. N. Kuznetsov
Bauman Moscow State Technical University (BMSTU, Bauman MSTU)
Russian Federation

Nikolay N. Kuznetsov

5/1, 2nd Baumanskaya str., Moscow, 105005



A. I. Marakhova
Peoples Friendship University of Russia (RUDN University)
Russian Federation

Anna I. Marakhova

6, Mikluho-Maklaya str., Moscow, 117198



References

1. Maroun R. G., Rajha H. N., Darra N. E., Kantar S. E., Chacar S., Debs E., Vorobiev E., Louka N. Emerging technologies for the extraction of polyphenols from natural sources. In: Polyphenols: Properties, Recovery, and Applications. Amsterdam: Elsevier; 2018. P. 265–293.

2. Zoumpoulakis P., Sinanoglou V. J., Siapi E., Heropoulos G., Proestos C. Evaluating Modern Techniques for the Extraction and Characterisation of Sunflower (Hellianthus annus L.) Seeds Phenolics. Antioxidants. 2017;6(3):46. DOI: 10.3390/antiox6030046.

3. Dzah C. S., Duan Y., Zhang H., Wen C., Zhang J., Chen G., Ma H. The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Bioscience. 2020;35:100547. DOI: 10.1016/j.fbio.2020.100547.

4. Lavilla I., Bendicho C. Fundamentals of Ultrasound-Assisted Extraction. In: Water Extraction of Bioactive Compounds. Amsterdam: Elsevier; 2017. P. 291–316. DOI: 10.1016/B978-0-12-809380-1.00011-5.

5. Madhu B., Srinivas M. S., Srinivas G., Jain S. K. Ultrasonic Technology and Its Applications in Quality Control, Processing and Preservation of Food: A Review. Current Journal of Applied Science and Technology. 2019;32(5):1–11. DOI: 10.9734/CJAST/2019/46909.

6. Petkova N., Ivanov I., Vrancheva R., Denev P., Pavlov A. Ultrasound and Microwave-Assisted Extraction of Elecampane (Inula helenium) Roots. Natural Product Communications. 2017;12(2):1934578X1701200. DOI: 10.1177/1934578X1701200207.

7. Rodsamran P., Sothornvit R. Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Bioscience. 2019;28:66–73. DOI: 10.1016/j.fbio.2019.01.017.

8. Maran J. P., Manikandan S., Nivetha C. V., Dinesh R. Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arabian Journal of Chemistry. 2017;10(1):S1145– S1157. DOI: 10.1016/j.arabjc.2013.02.007.

9. Da Porto C., Porretto E., Decorti D. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrasonics Sonochemistry. 2013;20(4):1076–1080. DOI: 10.1016/j.ultsonch.2012.12.002.

10. Van Man P., Vu T. A., Hai T. C. Effect of ultrasound on extraction of polyphenol from the old tea leaves. Annals. Food Science and Technology. 2017;18(1):44–50.

11. Yang X., Li Yu., Li S., Oladejo A.O., Ruan S., Wang Yu., Huang Sh., Ma H. Effects of ultrasound pretreatment with different frequencies and working modes on the enzymolysis and the structure characterization of rice protein. Ultrasonics Sonochemistry. 2017;38:19–28. DOI: 10.1016/j.ultsonch.2017.02.026.

12. Fernando C. D., Soysa P. Extraction Kinetics of phytochemicals and antioxidant activity during black tea (Camellia sinensis L.) brewing. Nutrition Journal. 2015;14(1):74. DOI: 10.1186/s12937-015-0060-x.

13. Carciochi R. A., Manrique G. D., Dimitrov K. Optimization of antioxidant phenolic compounds extraction from quinoa (Chenopodium quinoa) seeds. Journal of Food Science and Technology. 2015;52(7):4396–4404. DOI: 10.1007/s13197-014-1514-4.

14. Altemimi A., Watson D. G ., Choudhary R., Dasari M. R ., Lightfoot D. A. Ultrasound Assisted Extraction of Phenolic Compounds from Peaches and Pumpkins. PLOS ONE. 2016;11(2):e0148758. DOI: 10.1371/journal.pone.0148758.

15. Zou T.-B., Xia E.-Q., He T.-P., Huang M.-Y., Jia Q., Li H.-W. Ultrasound-Assisted Extraction of Mangiferin from Mango (Mangifera indica L.) Leaves Using Response Surface Methodology. Molecules. 2014;19(2):1411–1421. DOI: 10.3390/molecules19021411.

16. Vankar P. S., Srivastava J. Ultrasound-Assisted Extraction in Different Solvents for Phytochemical Study of Canna indica. International Journal of Food Engineering. 2010;6(3). DOI: 10.2202/1556-3758.1599.

17. Dzah C. S. Influence of fruit maturity on antioxidant potential and chilling injury resistance of peach fruit (Prunus persica) during cold storage. African J Food, Agric Nutr Dev. 2014;14(7):9578–9591.

18. Zengin G., Cvetanović A., Gašić U., Stupar A., Bulut G., Şenkardes I., Dogan A., Sinan K. I., Uysal S., Aumeeruddy-Elalfi Z., Aktumsek A., Mahomoodally M. F . Modern and traditional extraction techniques affect chemical composition and bioactivity of Tanacetum parthenium (L.) Sch.Bip. Industrial Crops and Products. 2020;146:112202. DOI: 10.1016/j.indcrop.2020.112202.

19. Sul’man M. G ., Ankudinova T. V ., Pirog D. N ., Sul’man Eh. M ., Semagina N. V. Sposob ekstraktsii iz tverdogo rastitel'nogo syr'ya [Method of extraction from solid vegetable raw material]. Patent RUS № 2104733. 06.11.1996. Available at: https://yandex.ru/patents/doc/RU2104733C1_19980220. Accessed: 28.09.2021. (In Russ.)

20. Zuev N. M., Sizova N. M. Spivak V. L. Sposob polucheniya sukhogo vodorastvorimogo ekstrakta iz rastitel'nogo syr'ya [Method of producing dry water-soluble extract from vegetable raw materials]. Patent RUS № 2005124561. Byul. № 4. Available at: https://yandex.ru/patents/doc/RU2005124561A_20070210. Accessed: 28.09.2021. (In Russ.)

21. Litvinets S. G ., Martinson E. A . Zlobin A. A . Sposob vydeleniya pektinovykh veshchestv v nativnom sostoyanii iz plodovykh obolochek shipovnika [Method for extraction of pectin substances in native state from rosehip fruit shells]. Patent RUS № 2485804. 16.03.2010. Byul. № 27. Available at: https://yandex.ru/patents/doc/RU2485804C2_20130627. Accessed: 28.09.2021. (In Russ.)

22. Zhivopiscev V. S. Ustanovka dlya ekstraktsii biologicheskogo syr'ya szhizhennymi gazami [Unit for extraction of biological raw materials with liquefied gases]. Patent RUS № 96121. 17.03.2010. Available at: https://yandex.ru/patents/doc/RU96121U1_20100720. Accessed: 28.09.2021. (In Russ.)

23. Shubenkova E. G., Chzhu O. P., Lobova Ju. Y., Lutaeva I. A. Study the influence of extraction conditions on elicitation of biologically active substances with antioxidant properties. Vestnik Novosibirskogo gosudarstvennogo pedagogicheskogo universiteta = Novosibirsk state pedagogical university. 2013;5(15):144–148. (In Russ.)

24. Valeeva A. R., Makarova N. V., Valiulina D. F. Optimisation of conditions for extracting bioactive compounds exhibiting antioxidant properties from hawthorn fruit (Crataegus). Proceedings of Universities Applied Chemistry and Biotechnology. 2019;9(2):239–249. DOI: 10.21285/2227-2925-2019-9-2-239-249.

25. Stavrianidi A. N., Rodin I. A., Braun A. V., Shpigun O. A. Rapid method of ultrasound-assisted extraction of Ginsenosides from plant materials and ginseng products applicable for HPLC-MS/MS analysis. Analitika i kontrol = Analytics and Control. 2013;17(4):459–464. (In Russ.)

26. Makarova N. V., Yeremeyeva N. B. Comparative study of the influence of ultrasonic influences on the extraction of antioxidant compounds of blackberry berries (Vaccinium myrtillus L.). Khimija rastitel'nogo syr'ja = Chemistry of plant raw material. 2020;1:167–177. (In Russ.) DOI: 10.14258/jcprm.2020014425.

27. Makarova N.V., Valiulina D.F., Eremeeva N.B. Comparative studies of extraction methods of biologically-active substances with antioxidant properties from grape seed (Vitis vinifera L.). Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2020;10(1):140– 148. (In Russ.) DOI: 10.21285/2227-2925-2020-10-1-140-148.

28. Eremeeva N. B., Makarova N. V. The effect of extraction technology on antioxidant activity of black chokeberry. Vestnik MGTU. 2017;20(3):600– 608. (In Russ.) DOI: 10.21443/1560-9278-2017-20-3-600-608.

29. Apaeva A. V., Yamansarova E. T., Kukovinets O. S., Zvorigina O. B. The effect of ultrasonic irradiation on extraction of flavonoids from green mass of buckwheat. Vestnik Bashkirskogo universiteta = Bulletin of Bashkir University. 2016;21(1):69–72. (In Russ.)

30. Belokurov S. S., Flysyuk E. V., Smekhova I. E. Choice of Extration Method for Receiving Extraction from Seeds of Payne Hay with the High Content of Biologically Active Substances. Razrabotka i registratsiya lekarstvennykh sredstv = Drug development & registration. 2019;8(3):35–39. (In Russ.) DOI: 10.33380/2305-2066-2019-8-3-35-39.

31. Belokurov S. S ., Flisyuk E. V ., Narkevich I. A ., Luzhanin V. G ., Shilov S. V ., Novikova K. O . Comparative Analysis of Perspec-tive Extragation Methods for Receiving Extractions from Fenugreek Seeds. Razrabotka i registratsiya lekarstvennykh sredstv = Drug development & registration. 2019;8(3):49–55. (In Russ.) DOI: 10.33380/2305-2066-2019-8-3-49-55.

32. Zhilyakova E. T., Tsvetkova Z. E., Pisarev D. I., Boyko N. N., Tymoshenko E. Yu. Intensification of production process of thick extract of milk thistle fruits by ultrasonic processing of raw materials. Farmatsiya i farmakologiya = Pharmacy & Pharmacology. 2018;6(5):475–487. (In Russ.) DOI: 10.19163/2307-9266-2018-6-5-475-487.

33. Rudometova N. V., Kim I. S. Capsaicin extraction from hot pepper of Capsicum genus. Scientific Journal NRU ITMO. Nauchnyy zhurnal NIU ITMO. Seriya "Protsessy i apparaty pishchevykh proizvodstv" = Processes and Food Production Equipment. 2019;1:62–73. (In Russ.)

34. Popova N. V., Potoroko I. Yu. Increase of efficiency of biologically active substance extraction from vegetable raw material by ultrasonic treatment. Vestnika YuUrGU. Seriya «Pishchevye i biotekhnologii». = Bulletin of the South Ural State University Series Food and Biotechnology. 2018;6(1):14–22. (In Russ.) DOI: 10.14529/food180102.

35. Zagorulko E. Y., Teslev A. A., Ozhigova M. G. Development and optimization of ultrasound extraction of chamomile flowers (Chamomillae Recutita flores). 2018;6(2):151–166. (In Russ.) DOI: 10.19163/2307-9266-2018-6-2-151-166.

36. Milevskaya V. V., Temerdashev Z. A., Kiseleva N. V., Butyl’skaya T. S., Shil’ko E. A. Ekstraktsiya i opredelenie biologicheski aktivnykh komponentov zveroboya i preparatov na ego osnove [Extraction and determination of biologically active components of st. John’s wort and its pharmaceutical preparations]. Zhurnal analiticheskoy khimii = Journal of Analytical Chemistry. 2016;71(7):768–774. (In Russ.)

37. Podolina E. A., Khanina M. A., Rudakov O. B., Nebolsin A. E. Ultrasonic extraction and UV spectrophotometric determination of the amount of flavonoids and tanning agents in the above-ground part of a bluebottle. Vestnik VGU. Seriya: Khimiya. Biologiya. Farmat-siya = Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2018;2:28–35. (In Russ.)

38. Tiwari B. K. Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry. 2015;71:100–109. DOI: 10.1016/j.trac.2015.04.013.

39. Segovia F. J., Corral-Pérez J. J., Almajano M. P. Avocado seed: Modeling extraction of bioactive compounds. Industrial Crops and Products. 2016;85:213–220. DOI: 10.1016/j.indcrop.2016.03.005.

40. Sousa A. D., Maia A. I. V., Rodrigues T. H. S., Canuto K. M., Ribeiro P. R. V., de Cassia Alves Pereira R., Vieira R. F., de Brito E. S. Ultrasound-assisted and pressurized liquid extraction of phenolic compounds from Phyllanthus amarus and its composition evaluation by UPLC-QTOF. Industrial Crops and Products. 2016;79:91–103. DOI: 10.1016/j.indcrop.2015.10.045.

41. Rodrigues D., Freitas A. C., Sousa S., Amorim M., Vasconcelos M. W., da Costa J. P., Silva A. M. S., Rocha-Santos T. A. P., Duarte A. C., Gomes A. M. P. Chemical and structural characterization of Pholiota nameko extracts with biological properties. Food Chemistry. 2017;216:176–85. DOI: 10.1016/j.foodchem.2016.08.030.

42. Khemakhem I., Ahmad-Qasem M. H., Catalán E. B., Micol V., García-Pérez J. V., Ayadi M. A., Bouaziz M. Kinetic improvement of olive leaves’ bioactive compounds extraction by using power ultrasound in a wide temperature range. Ultrasonics Sonochemistry. 2017;34:466–473. DOI: 10.1016/j.ultsonch.2016.06.010.

43. Kazemi M., Karim R., Mirhosseini H., Hamid A. A., Tamnak S. Processing of Parboiled Wheat Noodles Fortified with Pulsed Ultrasound Pomegranate (Punica granatum L. var. Malas) Peel Extract. Food and Bioprocess Technology. 2017;10(2):379–393. DOI: 10.1007/s11947-016-1825-8.

44. Chan C.-H., See T.-Y., Yusoff R., Ngoh G.-C., Kow K.-W. Extraction of bioactives from Orthosiphon stamineus using microwave and ultrasound-assisted techniques: Process optimization and scale up. Food Chemistry. 2017;221:1382–1387. DOI: 10.1016/j.foodchem.2016.11.016.

45. Tomšik A., Pavlić B., Vladić J., Ramić M., Brindza J., Vidović S. Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrasonics Sonochemistry. 2016;29:502–511. DOI: 10.1016/j.ultsonch.2015.11.005.

46. Al‐Suod H., Ratiu I.-A., Krakowska-Sieprawska A., Lahuta L., Górecki R., Buszewski B. Supercritical fluid extraction in isolation of cyclitols and sugars from chamomile flowers. Journal of Separation Science. 2019;42(20):3243–3252. DOI: 10.1002/jssc.201900539.

47. Dzah C. S., Duan Yu., Zhang H., Wen C., Zhang J., Chen G., Ma H. The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Bioscience. 2020;35:100547. DOI: 10.1016/j.fbio.2020.100547.

48. Llorent-Martínez E. J., Zengin G., Sinan K. I., Polat R., Canlı D., Picot-Allain M. C. N., Mahomoodally M. F. Impact of different extraction solvents and techniques on the biological activities of Cirsium yildizianum (Asteraceae: Cynareae). Industrial Crops and Products. 2020;144:112033. DOI: 10.1016/j.indcrop.2019.112033.

49. Zengin G., Cvetanović A., Gašić U., Stupar A., Bulut G., Şenkardes I., Dogan A., Sinan K. I., Uysal S., Aumeeruddy-Elalfi Z., Aktumsek A., Mahomoodally M. F . Modern and traditional extraction techniques affect chemical composition and bioactivity of Tanacetum parthenium (L.) Sch.Bip. Industrial Crops and Products. 2020;146:112202. DOI: 10.1016/j.indcrop.2020.112202.

50. Zoumpoulakis P., Sinanoglou V. J., Siapi E., Heropoulos G., Proestos C. Evaluating Modern Techniques for the Extraction and Characterisation of Sunflower (Hellianthus annus L.) Seeds Phenolics. Antioxidants. 2017;6(3):46. DOI: 10.3390/antiox6030046.

51. Chen G., Fang C., Chen X., Wang Z., Liu M., Kan J. Highpressure ultrasonic-assisted extraction of polysaccharides from Mentha haplocalyx: Structure, functional and biological activities. Industrial Crops and Products. 2019;130:273–284. DOI: 10.1016/j.indcrop.2018.12.086.

52. Seukep A. J., Zhang Y.-L., Xu Y.-B., Guo M.-Q. In Vitro Antibacterial and Antiproliferative Potential of Echinops lanceolatus Mattf. (Asteraceae) and Identification of Potential Bioactive Compounds. Pharmaceuticals. 2020;13(4):59. DOI: 10.3390/ph13040059.

53. Moczkowska M., Karp S., Niu Y., Kurek M. A. Enzymatic, enzymatic-ultrasonic and alkaline extraction of soluble dietary fibre from flaxseed – A physicochemical approach. Food Hydrocolloids. 2019;90:105–112. DOI: 10.1016/j.foodhyd.2018.12.018.

54. Rodsamran P., Sothornvit R. Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Bioscience. 2019;28:66–73. DOI: 10.1016/j.fbio.2019.01.017.

55. Santos K. A., Gonçalves J. E., Cardozo-Filho L., da Silva E. A. Pressurized liquid and ultrasound-assisted extraction of α-bisabolol from candeia (Eremanthus erythropappus) wood. Industrial Crops and Products. 2019;130:428–435. DOI: 10.1016/j.indcrop.2019.01.013.

56. Sharayei P., Azarpazhooh E., Zomorodi S., Ramaswamy H. S. Ult-rasound assisted extraction of bioactive compounds from pomegranate (Punica granatum L.) peel. LWT. 2019;101:342–350. DOI: 10.1016/j.lwt.2018.11.031.

57. Sut S., Dall’Acqua S., Zengin G., Senkardes I., Bulut G., Cvetanović A., Stupar A., Mandić A., Picot-Allain C., Dogan A., Sinan K. I., Mahomoodally F. Influence of different extraction techniques on the chemical profile and biological properties of Anthemis cotula L.: Multifunctional aspects for potential pharmaceutical applications. Journal of Pharmaceutical and Biomedical Analysis. 2019;173:75–85. DOI: 10.1016/j.indcrop.2012.04.027.

58. St-Pierre F., Achim A., Stevanovic T. Composition of ethanolic extracts of wood and bark from Acer saccharum and Betula alleghaniensis trees of different vigor classes. Industrial Crops and Products. 2013;41:179–187. DOI: 10.1016/j.indcrop.2012.04.027.

59. Stroe A.-C., Oancea S. Ultrasound-assisted and enzyme-assisted extraction of fructans and phenolics from parsnip (Pastinaca sativa L.). Current Trends in Natural Sciences. 2019;8(15):29–34.

60. Valachovic P., Pechova A., Mason T. J. Towards the industrial production of medicinal tincture by ultrasound assisted extraction. Ultrasonics Sonochemistry. 2001;8(2):111–117. DOI: 10.1016/s1350-4177(00)00066-3.

61. Hromádková Z., Ebringerová A., Valachovič P. Ultrasound-assisted extraction of water-soluble polysaccharides from the roots of valerian (Valeriana officinalis L.). Ultrasonics Sonochemistry. 2002;9(1):37–44. DOI: 10.1016/s1350-4177(01)00093-1.

62. Zhang X., Ban Q., Wang X., Wang Z. Green and Efficient PEG-Based Ultrasonic-Assisted Extraction of Polysaccharides from Tree Peony Pods and the Evaluation of Their Antioxidant Activity In Vitro. BioMed Research International. 2018;2018:1–7. DOI: 10.1155/2018/2121385.

63. Bimakr M., Rahman R. A., Taip F. S., Adzahan N. M., Sarker Md. Z. I., Ganjloo A. Optimization of Ultrasound-Assisted Extraction of Crude Oil from Winter Melon (Benincasa hispida) Seed Using Response Surface Methodology and Evaluation of Its Antioxidant Activity, Total Phenolic Content and Fatty Acid Composition. Molecules. 2012;17(10):11748–11762. DOI: 10.3390/molecules171011748.

64. Cares M. G., Vargas Y., Gaete L., Sainz J., Alarcon J. Ultrasonically assisted Extraction of bioactive principles from Quillaja Saponaria Molina. Physics Procedia. 2010;3(1):169–178. DOI: 10.1016/j.phpro.2010.01.024.

65. Mansoori S., Bahmanyar H., Ozumchelouei E. J., Najafipour I. Investigation and optimisation of the extraction of carvone and limonene from the Iranian Mentha spicata through the ultrasound-assisted extraction method. Indian Chemical Engineer. 2020:1–10. DOI: 10.1080/00194506.2020.1831407.

66. Dumitrash P. G., Bologa M. K., Shemyakova T. D. Ul'trazvukovaya ekstraktsiya biologicheski aktivnykh soedineniy iz semyan tomatov [Ultrasonic extraction of biologically active compounds from tomato seeds]. Elektronnaya Obrabotka Materialov = Electronic Processing of Materials. 2016;52(3):47–52. (In Russ.)


Supplementary files

1. Графический абстракт
Subject
Type Исследовательские инструменты
View (210KB)    
Indexing metadata ▾

Review

For citations:


Elapov A.A., Kuznetsov N.N., Marakhova A.I. The Use of Ultrasound in the Extraction of Biologically Active Compounds from Plant Raw Materials, Used or promising for Use in Medicine (Review). Drug development & registration. 2021;10(4):96-116. (In Russ.) https://doi.org/10.33380/2305-2066-2021-10-4-96-116

Views: 4471


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)