Three-dimensional printing of ramipril tablets by fused deposition modeling
https://doi.org/10.33380/2305-2066-2021-10-4(1)-79-87
Abstract
Introduction. Arterial hypertension is one of the main risk factors for the development of cardiovascular diseases. Drug treatment of arterial hypertension is associated with a number of difficulties: often requires combination therapy, also a possible change in either dosages or drugs during treatment during the patient's life. Three-dimensional printing allows to create individual medicines on-demand.
Aim. Study suitability of Kollidon® VA 64 as a matrix-polymer for the preparation of immediate release ramipril printing tablets.
Materials and methods. Substance: ramipril; excipients: Kollidon® VA 64, Kollidon® CL-F, Soluplus®, PEG 1500, sodium carbonate anhydrous, Poloxamer 188, sodium stearyl fumarate, mannitol; reagents: hydrochloric acid, acetonitrile for ultra-HPLC, sodium octanesulfonate for HPLC, orthophosphoric acid 85 %, sodium perchlorate analytical grade, triethylamine, standard: ramipril USP (№1598303). Ramipril filaments were prepared by hot melt extrusion on the extruder Haake™ miniCTW (Thermo Fisher Scientific). The tablets were printed on a hand-made 3D printer. The printlets were studied for friability and hardness. Uniformity and quantitative determination of ramipril and impurities in tablets and filaments were determined by high performance liquid chromatography on a Shimadzu Prominence LC liquid chromatograph. Stability of ramipril was studied on a DSC 3+ Mettler Toledo by differential scanning calorimetry. Also, the stability of ramipril was determined by the Raman spectroscopy on an analytical system ORTES-785TRS-2700.
Results and discussion. Ramipril filaments with a diameter of 1.75 mm were obtained by melt extrusion at a temperature of 105 °C. They were homogeneous in quantitative content of the active substance. From the resulting filaments, tablets were printed in five configurations with three filling densities: 30 %, 50 % and 100 %. Degradation of ramipril in filaments and tablets is not observed. The melting point of the selected mixture is lower than the melting point of matrix-polymer. It makes possible to lower the processing temperature. Tablets with 100 % filling provide an immediate release of ramipril.
Conclusion. Kollidon® VA 64 is suitable as a matrix-polymer for the development of immediate release ramipril printlets. Kollidon® VA 64 provides the necessary physical and processing properties of the filament required for FDM printing.
Keywords
About the Authors
O. A. TerentevaRussian Federation
Oksana A. Terenteva
14A, Professor Popov str., St. Petersburg, 197376, Russia
9 Akad. Pavlova str., St. Petersburg, 197376, Russia
K. A. Gusev
Russian Federation
14A, Professor Popov str., St. Petersburg, 197376, Russia
9 Akad. Pavlova str., St. Petersburg, 197376, Russia
V. V. Tikhonova
Russian Federation
14A, Professor Popov str., St. Petersburg, 197376, Russia
D. N. Maimistov
Russian Federation
14A, Professor Popov str., St. Petersburg, 197376, Russia
G. A. Shandryuk
Russian Federation
29, Leninsky prospekt, Moscow, 119071, Russia
E. V. Flisyuk
Russian Federation
14A, Professor Popov str., St. Petersburg, 197376, Russia
References
1. Douroumis D. 3D printing of pharmaceutical and medical applications: a new era. Pharmaceutical Research. 2019;36(3):42. DOI: 10.1007/s11095-019-2575-x.
2. Souto E. B., Campos J. C., Filho S. C., Teixeira M. C., Martins- Gomes C., Zielinska A., Carbone C., Silva A. M. 3D printing in the design of pharmaceutical dosage forms. Pharmaceutical development and technology. 2019;24(8):1044–1053. DOI: 10.1080/10837450.2019.1620426.
3. Lamichhane S., Bashyal S., Keum T., Noh G., Seo J. E., Bastola R., Choi J., Sohn D. H., Lee S. Complex formulations, simple techniques: Can 3D printing technology be the Midas touch in pharmaceutical industry? Asian journal of pharmaceutical sciences. 2019;14(5):465–479. DOI: 10.1016/j.ajps.2018.11.008.
4. Goyanes A., Fina F., Martorana A., Sedough D., Gaisford S., Basit A. W. Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. International Journal of pharmaceutics. 2017;527(1–2):21–30. DOI: 10.1016/j.ijpharm.2017.05.021.
5. Trenfield S. J., Awad A., Goyanes A., Gaisford S., Basit A. W. 3D printing pharmaceuticals: drug development to frontline care. Trends in pharmacological sciences. 2018;39(5):440–451. DOI: 10.1016/j.tips.2018.02.006.
6. Chandekar A., Mishra D. K., Sharma S., Saraogi G. K., Gupta U., Gupta G. 3D printing technology: a new milestone in the development of pharmaceuticals. Current pharmaceutical design. 2019;25(9):937–945. DOI: 10.2174/1381612825666190507115504.
7. Narkevich I. A., Flisyuk E. V., Terent’eva O. A., Semin A. A. Additive manufacturing technologies for pharmaceutics. Pharmaceutical Chemistry Journal. 2018;51(11):1025–1029. DOI: 10.1007/s11094-018-1733-5.
8. Goyanes A., Buanz A. B. M., Hatton G. B., Gaisford S., Basit A. W. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. European journal of pharmaceutics and biopharmaceutics. 2015;89:157–162. DOI: 10.1016/j.ejpb.2014.12.003.
9. Blynskaya E. V., Tishkov S. V., Alekseev K. V. Three-dimensional printing technology for the production of dosage forms. Razrabotka i registratsiya lekarstvennykh sredstv = Drug development & registration. 2018;(3):10–19. (In Russ.)
10. Pereira B. C., Isreb A., Isreb M., Forbes R. T., Oga E. F., Alhnan M. A. Additive manufacturing of a Point-of-Care «Polypill»: fabrication of concept capsules of complex geometry with bespoke release against cardiovascular disease. Advanced healthcare materials. 2020;9(13):2000236. DOI: 10.1002/adhm.202000236.
11. Pereira B. C., Isreb A., Forbes R. T., Dores F., Habashy R., Petit J., Alhnan M. A., Oga E. F. «Temporary Plasticiser»: A novel solution to fabricate 3D printed patient-centred cardiovascular «Polypill» architectures. European Journal of Pharmaceutics and Biopharmaceutics. 2019;135:94–103. DOI: 10.1016/j.ejpb.2018.12.009.
12. Robles-Martinez P., Xu X., Trenfield S. J., Awad A., Goyanes A., Telford R., Basit A. W., Gaisford S. 3D printing of a multi-layered Polypill containing six drugs using a novel stereolithographic method. Pharmaceutics. 2019;11(6). DOI: 10.3390/pharmaceutics11060274.
13. Khaled S. A., Burley J. C., Alexander M. R., Yang J., Roberts C. J. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. Journal of controlled release. 2015;217:308–314. DOI: 10.1016/j.jconrel.2015.09.028.
14. Shadrin A. A., Flisyuk E. V., Smekhova I. E. Dissolution profile studies for ramipril and lercanidipine fixed-dose combination. Razrabotka i registratsiya lekarstvennykh sredstv = Drug development & registration. 2016;(3):152–156. (In Russ.)
Supplementary files
|
1. Графический абстракт | |
Subject | ||
Type | Исследовательские инструменты | |
View
(605KB)
|
Indexing metadata ▾ |
Review
For citations:
Terenteva O.A., Gusev K.A., Tikhonova V.V., Maimistov D.N., Shandryuk G.A., Flisyuk E.V. Three-dimensional printing of ramipril tablets by fused deposition modeling. Drug development & registration. 2021;10(4):79-87. https://doi.org/10.33380/2305-2066-2021-10-4(1)-79-87