Preview

Drug development & registration

Advanced search

Comparative transcriptomic analysis of the malaria parasites Plasmodium falciparum and Plasmodium vivax sensitive and resistant strains

https://doi.org/10.33380/2305-2066-2022-11-1-23-31

Abstract

Introduction. Malaria is the sixth leading cause of death worldwide. According to a WHO survey (2019-2020), the total number of malaria deaths is estimated to be 409000. Plasmodium falciparum and Plasmodium vivax are major malaria parasites, particularly in subtropical areas.

Materials and methods. In the present study, we used a transcriptome analysis of raw RNA sequence data to identify and characterize the differentially expressed genes in Plasmodium falciparum chloroquine-sensitive and chloroquine-resistant strains, as well as Plasmodium vivax primaquine sensitive and primaquine resistant strains. The raw RNA sequence data were obtained from the NCBI SRA database using the Accession IDs PRJNA308455, SRR14191963, and SRR332573.

Results and discussion. The sequence of raw RNA was quantified, mapped, and annotated. The total number of reads mapped to the reference genome for Plasmodium falciparum was found to be 45474448 and for Plasmodium vivax was 38226870. The Cufflinks-Cuffdiff tool was used to identify differentially expressed genes in Plasmodium falciparum and Plasmodium vivax sensitive and resistant strains. This differentially expressed gene was further annotated and plotted using the "Limma" package of Bioconductor. The PPI network was constructed in String Database and Cytoscape software. Pathway enrichment analysis of list differentially expressed gene performed using KEGG and GO tool.

Conclusion. In sensitive and resistant strains, comparative transcriptome analysis revealed differentially regulated gene expression patterns.

About the Authors

S. Sakpal
Amity Institute of Biotechnology, Amity University Rajasthan; Department of Biotechnology, Dr. Homi Bhabha State University, The Institute of Science
India

Shrutika Sakpal

Jaipur, 303002, Rajasthan, India

Mumbai, 400032, India



S. Z. Abdeen
Department of Biotechnology, Dr. Homi Bhabha State University, The Institute of Science
India

Sayyed Zara Abdeen

Mumbai, 400032, India



Sh. L. Kothari
Amity Institute of Biotechnology, Amity University Rajasthan
India

Shanker Lal Kothari

Jaipur, 303002, Rajasthan, India



V. Bastikar
Amity Institute of Biotechnology, Amity University
India

Virupaksha Bastikar

Maharashtra, 410206, India



References

1. Aurrecoechea C., Brestelli J., Brunk B. P., Dommer J., Fischer S., Gajria B., Gao X., Gingle A., Grant G., Harb O. S., Heiges M., Innamorato F., Iodice J., Kissinger J. C., Kraemer E., Li W., Miller J. A., Nayak V., Pennington C., Pinney D. F., Roos D. S., Ross C., Stoeckert C. J., Treatman C., Wang H. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Research. 2009;37(Database):D539–D543. DOI: 10.1093/nar/gkn814.

2. Ford A., Kepple D., Abagero, B. R., Connors J., Pearson R., Auburn S., Getachew , Ford C., Gunalan K., Miller L. H., Janies D. A., Rayner J. C., Yan G., Yewhalaw D., Lo, E. Whole genome sequencing of Plasmodium vivax isolates reveals frequent sequence and structural polymorphisms in erythrocyte binding genes. PLoS Neglected Tropical Diseases. 2020;14(10):e0008234. DOI: 10.1371/journal.pntd.0008234

3. Bolger A. M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. DOI: 10.1093/bioinformatics/btu170.

4. Andrews S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ Accessed: 25.11.2021.

5. Bousema T., Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clinical microbiology reviews. 2011;24(2):377–410.

6. Hartzell J. D., Aronson N. E., Weina P. J., Howard R. S., Yadava A., Wortmann G. W. Positive rK39 serologic assay results in US servicemen with cutaneous leishmaniasis. The American journal of tropical medicine and hygiene. 2008;79(6):843–846.

7. Bozdech Z., Llinás M., Pulliam B. L., Wong E. D., Zhu J., DeRisi J. L., Ward G. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS biology. 2003;1(1):e5.

8. Cui L., Mascorro C. N., Fan Q., Rzomp K. A., Khuntirat B., Zhou G., Chen H., Yan G., Sattabongkot J. Genetic diversity and multiple infections of Plasmodium vivax malaria in Western Thailand. The American journal of tropical medicine and hygiene. 2003;68(5):613–619. DOI: 10.4269/ajtmh.2003.68.613.

9. Blankenberg D., Von Kuster G., Bouvier E., Baker D., Afgan E., Stoler N., Galaxy Team, Taylor J., Nekrutenko A. Dissemination of scientific software with Galaxy ToolShed. Genome biology. 2014;15(2):1–3.

10. Afgan E., Baker D., Batut B., van den Beek M., Bouvier D., Сech M., Chilton J., Clements D., Coraor N., Grüning B. A., Guerler A., Hillman- Jackson J., Hiltemann S., Jalili V., Rasche H., Soranzo N., Goecks J., Taylor J., Nekrutenko A., Blankenberg, D. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic acids research. 2018;46(W1):W537–W544. DOI: 10.1093/nar/gky379.

11. Fola A. A., Harrison G. A., Hazairin M. H., Barnadas C., Hetzel M. W., Iga J., Siba P. M., Mueller I., Barry A. E. Higher complexity of infection and genetic diversity of Plasmodium vivax than Plasmodium falciparum across all malaria transmission zones of Papua New Guinea. The American journal of tropical medicine and hygiene. 2017;96(3):630–641. DOI: 10.4269/ajtmh.16-0716.

12. Antony H. A., Pathak V., Parija S. C., Ghosh K., Bhattacherjee A. Whole transcriptome expression analysis and comparison of two different strains of Plasmodium falciparum using RNA-Seq. Genome Data. 2016;8:110–112. DOI: 10.1016/j.gdata.2016.04.004.

13. Kukurba K. R., Montgomery S. B. RNA Sequencing and Analysis. Cold Spring Harbor Protocols. 2015;2015(11):pdb.top084970. DOI: 10.1101/pdb.top084970.

14. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013. Available at: https://arxiv.org/abs/1303.3997. Accessed: 25.11.2021.

15. Ritchie M. E., Phipson B., Wu D. I., Hu Y., Law C. W., Shi W., Smyth G. K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research. 2015;43(7):e47–e47.

16. PlasmoDB: An integrative database of the Plasmodium falciparum genome. Tools for accessing and analyzing finished and unfinished sequence data. Nucleic Acids Research. 2001;29(1):66–69. DOI: 10.1093/nar/29.1.66.

17. Trapnell C., Roberts A., Goff L., Pertea G., Kim D., Kelley D. R., Pimentel H., Salzberg S. L., Rinn J. L., Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature protocols. 2012;7(3):562–578.

18. World Health Organization. In vitro micro-test (Mark III) for the assessment of the response of Plasmodium falciparum to chloroquine, mefloquine, quinine, amodiaquine, sulfadoxine (No. CTD/MAL/97.20 Rev. 2 2001). World Health Organization. 2001.

19. World malaria report 2019. World malaria report 2019. In WHO Regional Office for Africa. Available at: https://www.who.int/news-room/fact-sheets/detail/malaria. Accessed: 25.11.2021.


Supplementary files

1. Графический абстракт
Subject
Type Исследовательские инструменты
View (1MB)    
Indexing metadata ▾

Review

For citations:


Sakpal S., Abdeen S.Z., Kothari Sh.L., Bastikar V. Comparative transcriptomic analysis of the malaria parasites Plasmodium falciparum and Plasmodium vivax sensitive and resistant strains. Drug development & registration. 2022;11(1):23-31. https://doi.org/10.33380/2305-2066-2022-11-1-23-31

Views: 2413


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)