Preview

Drug development & registration

Advanced search

Determination of Optimal Technological Conditions for the Process of Production a Liposomal Dosage Form of Cyphetrylin

https://doi.org/10.33380/2305-2066-2022-11-1-82-89

Abstract

Introduction. The Laboratory for the development of dosage forms of the N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russian Federation has developed a composition of an injectable liposomal dosage form based on soybean phosphatidylcholine, a hydrophobic analog of the hypothalamic hormone somatostatin − cyphetrylin, intended for the treatment of neuroendocrine tumors.

Aim. Determination of optimal technological conditions for the process of obtaining a liposomal dosage form of cyphetrylin.

Materials and methods. The study used the substance cyphetrylin synthesized in the of Chemical Synthesis Laboratory of the N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russian Federation; soybean phosphatidylcholine S PC and polyethylene glycol-2000-distearoylphosphatidylethanolamine, produced by Lipoid GmbH (Germany); cholesterol ≥99 % (Sigma-Aldrich, Japan). For the preparation of phospholipid vesicles loaded with cyphetrylin and "empty", the methods of lipid film hydration with subsequent extrusion or homogenization of the dispersion of multi-layer liposomes were used. The obtained liposomal samples were evaluated by quality indicators − the effectiveness of the inclusion of cyphetrylin in vesicles, their average size and surface charge (zeta potential), the viscosity of the dispersion. To evaluate these characteristics, the methods of spectrophotometry, laser scattering spectroscopy, determination of the electrophoretic mobility of particles and viscometry were used.

Results and discussion. It was found that the most suitable organic solvent for obtaining a solution of cyphetrylin and lipid components of the dosage form is chloroform. The duration of the drying period of the lipid film under vacuum to remove the residual solvent is determined by the ratio of the volume of the distillation flask used and the mass of its loading its loading. At the same time, hydration off the lipid film with water for injection should be carried out under conditions of low-pressure and room temperature. To obtain a dispersion of single-layer cyphetrylin liposomes of the required size, an extrusion method using nylon and polycarbonate membranes with a filter pore diameter of 0.22 and 0.2 um, respectively, was chosen.

Conclusion. The optimal technological conditions for the process of obtaining a liposomal dosage form in the form of a dispersion of a hydrophobic analog of the hypothalamic hormone somatostatin − cyphetrylin are determined.

About the Authors

M. V. Dmitrieva
FSBI "National Medical Research Center of Oncology. N. N. Blokhin"
Russian Federation

Maria V. Dmitrieva

24, Kashirskoe highway, Moscow, 115478, Russia



O. L. Orlova
FSBI "National Medical Research Center of Oncology. N. N. Blokhin"
Russian Federation

24, Kashirskoe highway, Moscow, 115478, Russia



A. V. Lantsova
FSBI "National Medical Research Center of Oncology. N. N. Blokhin"
Russian Federation

24, Kashirskoe highway, Moscow, 115478, Russia



I. I. Krasnyuk
I. M. Sechenov First MSMU of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

8/2, Trubetskaya str., Mosсow, 119991, Russia



References

1. Borisova L. M., Kiseleva M. P., Osipov V. N., Sushinina L. P., Ustinkina S. V., Smirnova L. I., Shprakh Z. S. Cyphetrylin cytotoxic analogues (report II). Rossiyskiy bioterapevticheskiy zhurnal = Russian Journal of Biotherapy. 2017;16(2):23−29. (In Russ.) DOI: 10.17650/1726-9784-2017-16-2-23-29.

2. Osipov V. N., Sushinina L. P., Ustinkina S. V., Smirnova L. I., Shprakh Z. S. Cyphetrylin cytotoxic analogues (report I). Rossiyskiy bioterapevticheskiy zhurnal = Russian Journal of Biotherapy. 2016;15(4):85−88. (In Russ.) DOI: 10.17650/1726-9784-2016-15-4-85-88.

3. Konyaeva O. I., Kulbachevskaya N. Yu., Ermakova N. P., Сhaley V. A., Merkulova I. B., Abramova T. V., Buchman V. M., Shprakh Z. S. Pre-clinical toxicological study of analogue of hypothalamic hormone cyphetrylin. Rossiyskiy bioterapevticheskiy zhurnal = Russian Journal of Biotherapy. 2018;17(2):63−70. (In Russ.) DOI: 10.17650/1726-9784-2018-17-2-63-70.

4. Dmitrieva M., Shprakh Z., Orlova O., Ignatyeva E., Lantsova A., Nikolaeva L., Krasniuk I. Selection of the composition of a liposomal dosage form of a russian somatostatin analogu e with antitumor activity. Inter J Appl Pharm. 2020;12(6):65−68. DOI: 10.22159/ijap.2020v12i6.39253.

5. Shprakh Z. Somatostatin analogues for the treatment of neuroendocrine tumours. Dosage forms and routes of administration (review). Inter J Appl Pharm. 2020;12(2):6−11. DOI: 10.22159/ijap.2020v12i2.36558.

6. Manaia E. B., Abuçafy M. P., Chiari-Andréo B. G., Silva B. L., Oshiro- Junior J. A., Chiavacci L. A. Physicochemical characterization of drug nanocarriers. International Journal of Nanomedicine. 2017;12:4991−5011. DOI: 10.2147/IJN.S133832.

7. Zarrabi A., Abadi M. A. A., Khorasani S., Mohammadabadi M. R., Jamshidi A., Torkaman S., Taghavi E., Mozafari M. R., Rasti B. Nanoliposomes and tocosomes as multifunctional nanocarriers for the encapsulation of nutraceutical and dietary molecules. Molecules. 2020;25(3):638. DOI: 10.3390/molecules25030638.

8. Bozzuto G., Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975−99. DOI: 10.2147/IJN.S68861.

9. Németh Z., Pallagi E., Dobó D. G., Csóka I. A proposed methodology for a risk assessment-based liposome development process. Pharmaceutics. 2020;12(12):1164. DOI: 10.3390/pharmaceutics12121164.

10. Dmitrieva M. V., Тimofeeva T. A., Lugen B., Оrlova O. L., Оborotova N. A., Krasniuk I. I. Hydration of the lipid film under normal and low-pressure in the technology of liposomal preparations. 4th Russian Conference on Medicinal Chemistry with international participants. MedChem Russia 2019. Abstract book. Ekaterinburg: Ural Branch of the Russian Academy of Sciences; 2019. P. 339.

11. Allahou L. W, Madani S. Y., Seifalian A. Investigating the application of liposomes as drug delivery systems for the diagnosis and treatment of cancer. Int J Biomater. 2021;2021:3041969. DOI: 10.1155/2021/3041969.

12. Dmitrieva M. V., Lugen Bu, Oborotova N. A., Krasnyuk I. I., Krasnyuk I. I. (jr.), Belyackaya A. V., Stepanova O. I., Bokov D. O., Naryshkin S. R., Mazyarkin E. V. The method of extrusion in the technology of obtaining liposomes. Vestnik VGU, Seriya: Khimiya. Biologiya. Farmatsiya = Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2020;3:88−97. (In Russ.)

13. Jaradat E., Weaver E., Meziane A., Lamprou D. A. Microfluidics technology for the design and formulation of nanomedicines. Nanomaterials (Basel). 2021;11(12):3440. DOI: 10.3390/nano11123440.


Supplementary files

1. Графический абстракт
Subject
Type Исследовательские инструменты
View (2MB)    
Indexing metadata ▾

Review

For citations:


Dmitrieva M.V., Orlova O.L., Lantsova A.V., Krasnyuk I.I. Determination of Optimal Technological Conditions for the Process of Production a Liposomal Dosage Form of Cyphetrylin. Drug development & registration. 2022;11(1):82-89. (In Russ.) https://doi.org/10.33380/2305-2066-2022-11-1-82-89

Views: 1367


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)