Study of the Pharmaceutical Grade Polymers effect on the Dissolution of Practically Insoluble Antiretroviral Substances
https://doi.org/10.33380/2305-2066-2022-11-2-87-93
Abstract
Introduction. Many of new active pharmaceutical ingredients (APIs) have low solubility that can affect bioavailability negatively and therefore therapeutically efficacy as well. These APIs include the following antiretroviral substances: ritonavir, efavirenz, etravirine. There are various approaches to increase the dissolution of the APIs, for example, the preparation of solid dispersion systems (SDS), in which polymer is used as a drug carrier, and the other one is usage of surfactants. However, the techniques used to obtain SDS have a number of disadvantages: high temperatures, organic solvents and expensive equipment. In turn, surfactants affect the work of internal organs, have an irritating effect. Instead of these methods, they use pharmaceutical acceptable polymers, which are safer in comparison with low-molecular-weight surfactants and still act as surface-active agents.
Aim. Study of the pharmaceutical grade polymers effect on the dissolution of practically insoluble antiretroviral substances: ritonavir, efavirenz, etravirine.
Materials and methods. APIs: efavirenz form І (LLC "AMEDART", Russia, batch 010520); efavirenz reference standard (USP No. R09740); ritonavir form I (LLC "AMEDART", Russia, batch 010320); ritonavir form II (LLC "AMEDART", Russia, batch 010320); ritonavir reference standard
(USP No. H0M427); etravirine form І (LLC “AMEDART”, Russia, batch 010720); etravirine reference standard (MSN, India, batch ETV/A312/6/01). The dissolution of substances in polymer solutions was studied using the Paddle apparatus under the conditions recommended by the FDA for the drugs.
Results and discussion. The nature of the effect, which is, as defined, influenced by the type of polymer, the concentration of the polymer solution and the pH of the medium, is ambivalent. Both a substance dissolution increase and a decrease are possible. Polymers, such as hydroxypropylcellulose, hydroxypropylmethylcellulose, Eudragit® E PO, can significantly increase the dissolution of substances, while polyvinylpyrrolidone can block it in certain cases. The greatest increase in dissolution of ritonavir, efavirenz and etravirine was found in Eudragit®
E PO solutions.
Conclusion. The results of the study showed the feasibility of determining the bioavailability of dosage forms of practically insoluble APIs with the inclusion of polymer excipients in their formulations.
About the Authors
S. A. ZolotovRussian Federation
42/24, Volgogradskiy avenue, Moscow, 109316
N. B. Demina
Russian Federation
8/2, Trubetskaya str., Mosсow, 119991
E. S. Ponomarev
Russian Federation
42/24, Volgogradskiy avenue, Moscow, 109316
I. A. Dain
Russian Federation
42/24, Volgogradskiy avenue, Moscow, 109316
A. S. Zolotova
Russian Federation
42/24, Volgogradskiy avenue, Moscow, 109316
References
1. Göke K., Lorenz T., Repanas A., Schneider F., Steiner D., Baumann K., Bunjes H., Dietzel A., Finke J. H., Glasmacher B., Kwade A. Novel strategies for the formulation and processing of poorly water-soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics. 2018;126:40–56. DOI: 10.1016/j.ejpb.2017.05.008.
2. Lavra Z. M. M., Pereira de Santana D., Ré M. I. Solubility and dissolution performances of spray-dried solid dispersion of Efavirenz in Soluplus. Drug Development and Industrial Pharmacy. 2017;43(1):42–54. DOI: 10.1080/03639045.2016.1205598.
3. Morris J. B., Tisi D. A., Tan D. C. T., Worthington J. H. Development and Palatability Assessment of Norvir® (Ritonavir) 100 mg Powder for Pediatric Population. International Journal of Molecular Sciences. 2019;20(7):1718. DOI: 10.3390/ijms20071718.
4. Zolotov S. A., Demina N. B., Zolotova A. S. Influence of WaterSoluble Pharmaceutically Acceptable Polymers on the Solubility of Darunavir and Darunavir Ethanolate. Pharmaceutical Chemistry Journal. 2021;54(12):1274-1277. DOI: 10.1007/s11094-021-02354-8.
5. HIV Treatment: U.S. Food and Drug Administration. Available at: https://www.fda.gov/drugs/human-immunodeficiency-virus-hiv/hiv-treatment. Accessed: 23.10.2021.
6. Norvir Drug label information. Available at: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=2849298e-de6e-47bb8194-56e075b33fc3. Accessed: 23.10.2021.
7. Rosenberg J., Reinhold U., Liepold B., Derndl G., Breitenbach J., Alani L., Ghosh S. Solid pharmaceutical dosage form. Eurasian Patent № EA 011924 B1. 30.06.2009. Available at: http://www.eapatis.com/Data/EATXT/eapo2009/PDF/011924.pdf. Accessed: 23.10.2021. (In Russ.)
8. Intelence Drug label information. Available at: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=6a9cbc29-9f15-4b24-8d86-206b82887f3d. Accessed: 23.10.2021.
9. Kiekens F. R. I., Voorspoels J. F. M., Baert L. E. C. TMC 125 preparation spray drying production process. Russian Patent № RU 2406502 C2. 20.12.2010. Available at: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2406502&TypeFile=html. Accessed: 23.10.2021. (In Russ.)
10. Bhujbal S. V., Mitra B., Jain U., Gong Y., Agrawal A., Karki S., Taylor L. S., Kumar S., Zhou Q. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharmaceutica Sinica B. 2021;11(8):2505–2536. DOI: 10.1016/j.apsb.2021.05.014.
11. Stokrin® instructions for use: Reference book of medicines. Available at: https://www.vidal.ru/drugs/stocrin__37564%2012. Accessed: 23.10.2021. (In Russ.)
12. Paul T. J., Taylor T., Babu R. S. A. Sodium lauryl sulphate. British dental journal. 2019;227(12):1012. DOI: 10.1038/s41415-019-1108-7.
13. Ghosh I., Zhang J.-A. Oral formulations of deferasirox. Eurasian Patent № EA 031719 B1. 28.02.2019. Available at: http://www.eapatis.com/Data/EATXT/eapo2019/PDF/031719.pdf. Accessed: 23.10.2021. (In Russ.)
14. Águila-Hernández J., Trejo A., García-Flores B. E. Volumetric and Surface Tension Behavior of Aqueous Solutions of Polyvinylpyrrolidone in the Range (288 to 303) K. Journal of Chemical & Engineering Data. 2011;56(5):2371–2378. DOI: 10.1021/je101330b.
15. Mezdour S., Cuvelier G., Cash M.J., Michon C. Surface rheological properties of hydroxypropyl cellulose at air–water interface. Food Hydrocolloids. 2007;21(5-6):776–781. DOI: 10.1016/j.foodhyd.2006.09.011.
16. Nasatto P., Pignon F., Silveira J., Duarte M., Noseda M., Rinaudo M. Interfacial Properties of Methylcelluloses: The Influence of Molar Mass. Polymers. 2014;6(12):2961–2973. DOI: 10.3390/polym6122961.
17. Tanida S., Kurokawa T., Sato H., Kadota K., Tozuka Y. Evaluation of the micellization mechanism of an amphipathic graft copolymer with enhanced solubility of ipriflavone. Chemical and Pharmaceutical Bulletin. 2016;64(1):68–72. DOI: 10.1248/cpb.c15-00655.
18. Demina N. B. Current Trends in the Development of Technologies for Matrix Formulations with Modified Release. Pharmaceutical Chemistry Journal. 2016;50(7):475–480. DOI: 10.1007/s11094-016-1472-4.
19. Dissolution Methods. Available at: https://www.accessdata.fda.gov/scripts/CDER/dissolution/dsp_getallData.cfm. Accessed: 23.10.2021.
20. Zakhoda O. Yu., Sadchikova N. P., Demina N. B., Zolotov S. A., Zolotova A. S., Krasnyuk I. I. Determination of the quantitative content of efavirenz by high-performance liquid chromatography with an ultraviolet detector. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2020;2:65–72. (In Russ.)
21. United States Pharmacopeial Convention. The United States pharmacopeia. The national formulary. USP 43rd rev., NF 38th ed. V. 2. North Bethesda: The Convention; 2020. P. 3912–3914.
22. Chemburkar S. R., Bauer J., Deming K., Spiwek H., Patel K., Morris J., Henry R., Spanton S., Dziki W., Porter W., Quick J., Bauer P., Donaubauer J., Narayanan B. A., Soldani M., Riley D., McFarland K. Dealing with the Impact of Ritonavir Polymorphs on the Late Stages of Bulk Drug Process Development. Organic Process Research & Development. 2000;4(5):413–417. DOI: 10.1021/op000023y.
Supplementary files
|
1. Графический абстракт | |
Subject | ||
Type | Исследовательские инструменты | |
View
(1MB)
|
Indexing metadata ▾ |
Review
For citations:
Zolotov S.A., Demina N.B., Ponomarev E.S., Dain I.A., Zolotova A.S. Study of the Pharmaceutical Grade Polymers effect on the Dissolution of Practically Insoluble Antiretroviral Substances. Drug development & registration. 2022;11(2):87-93. (In Russ.) https://doi.org/10.33380/2305-2066-2022-11-2-87-93