Hypolipidemic Activity of the Polysaccharide L-rhamnopyranosyl-6-O-methyl-galacturonan in Combined Administration with HMG-CoA Reductase and Cholesterol Absorption Inhibitors
https://doi.org/10.33380/2305-2066-2022-11-3-57-63
Abstract
Introduction. Dyslipidemia treatment in many cases requires carefully selected combination of lipid-lowering drugs including bile acid sequestrants. A promising compound is L-rhamnopyranosyl-6-O-methyl-galacturonan (L-RAG), a polysaccharide obtained from the birch leaves (Betula pendula L.).
Aim. To evaluate the lipid-lowering activity of L-RAG administered in combination with the HMG-CoA reductase inhibitor rosuvastatin or the cholesterol absorption inhibitor ezetimibe.
Materials and methods. Hyperlipidemia in hamsters was reproduced by synthetic diet supplemented with 0.3 % cholesterol and 11 % coconut oil (HFCD). At the end of the experiment the levels of triacylglycerols (TAG), bile acids, total cholesterol (TC), cholesterol of low-density lipoproteins (LDL-C) and high-density lipoproteins (HDL-C) were determined in the blood serum using Chronolab Systems S. L. enzymatic kits (Spain), and atherogenic index (AI) was calculated.
Results and discussion. L-RAG demonstrates a lipid-lowering effect in a model of diet-induced hyperlipidemia in hamsters. The decrease in the TC level was mainly caused by a decrease in the content of cholesterol in the atherogenic LDL fraction, which led to a decrease in AI. The use of rosuvastatin and ezetimibe in combination with L-RAG leads to a better lipid-lowering effect. The additive effect of the polysaccharide is mainly due to a decrease in the level of bile acids in the blood serum, which indicates its ability to absorb them in the intestinal lumen and interrupt enterohepatic circulation, acting like bile acid sequestrants.
Conclusion. It was shown that administration of L-RAG together with ezetimibe or rosuvastatin led to a better decrease in the TC, TAG, LDL-C levels than with polysaccharide monotherapy or comparison drugs alone. The obtained data substantiate the prospects of using L-RAG in the complex therapy of hyperlipidemia.
About the Authors
E. E. BuykoRussian Federation
2, Moskovsky tract, Tomsk, 634050;
30, Lenin Av., Tomsk, 634050
V. V. Ivanov
Russian Federation
2, Moskovsky tract, Tomsk, 634050
O. A. Kaidash
Russian Federation
2, Moskovsky tract, Tomsk, 634050
O. Yu. Rybalkina
Russian Federation
3, Lenin Av., Tomsk, 634028
E. A. Kiseleva
Russian Federation
3, Lenin Av., Tomsk, 634028
S. V. Krivoshchekov
Russian Federation
2, Moskovsky tract, Tomsk, 634050
T. L. Kiseleva
Russian Federation
36, Varshavskoe shosse, Moscow, 115230
A. M. Guriev
Russian Federation
2, Moskovsky tract, Tomsk, 634050
M. V. Belousov
Russian Federation
2, Moskovsky tract, Tomsk, 634050;
30, Lenin Av., Tomsk, 634050
References
1. Kopin L., Lowenstein C. J. Dyslipidemia. Annals of internal medicine. 2017;167(11):ITC81–ITC96. DOI: 10.7326/AITC201712050.
2. Karr S. Epidemiology and management of hyperlipidemia. The American journal of managed care. 2017;23(9):S139–S148.
3. Sjouke B., Hovingh G. K., Kastelein J. J., Stefanutti C. Homozygous autosomal dominant hypercholesterolaemia: prevalence, diagnosis, and current and future treatment perspectives. Current Opinion in Lipidology. 2015;26(3):200–209. DOI: 10.1097/MOL.0000000000000179.
4. Xie J. H., Jin M. L., Morris G. A., Zha X. Q., Chen H. Q., Yi Y., Li J. E., Wang Z. J., Gao J., Nie S. P., Shang P., Xie M. Y. Advances on Bioactive Polysaccharides from Medicinal Plants. Critical Reviews in Food Science and Nutrition. 2016;56:S60–S84. DOI: 10.1080/10408398.2015.1069255.
5. Silva I. M. V., Machado F., Moreno M. J., Nunes C., Coimbra M. A., Coreta-Gomes F. Polysaccharide Structures and Their Hypocholesterolemic Potential. Molecules. 2021;26(15):4559. DOI: 10.3390/molecules26154559.
6. Rovkina K. I., Krivoshchekov S. V., Guryev A. M., Yusubov M. S. O., Belousov M. V. Development of a method for obtaining polysaccharides from birch leaves (Betula pendula Roth., Betula pubescens Ehrh.). Chemistry of plant raw materials. 2019;3:23–31. (In Russ.) DOI: 10.14258/jcprm.2019035420.
7. Rovkina K. I., Krivoshchekov S. V., Guryev A. M., Yusubov M. S., Bezverkhniaia E. A., Belousov M. V. Development of a method for quantitative determination of birch leaf polysaccharides. Bashkortostan Medical Journal. 2019;14(1(79):47–50. (In Russ.)
8. Rovkina K. I., Buyko E. E., Ivanov V. V., Kaidash O. A., Guryev A. M., Yusubov M. S., Belousov M. V. Hypolipidemic activity of plant polysaccharides. Traditsionnaya Meditsina. 2019;(2):39–44. (In Russ.)
9. Zhang X., Qiu B., Wang Q., Sivaprasad S., Wang Y., Zhao L., Xie R., Li L., Kang W. Dysregulated Serum Lipid Metabolism Promotes the Occurrence and Development of Diabetic Retinopathy Associated With Upregulated Circulating Levels of VEGF-A, VEGF-D, and PlGF. Frontiers in Medicine (Lausanne). 2021;22(8):779413. DOI: 10.3389/fmed.2021.779413.
10. Dillard A., Matthan N. R., Lichtenstein A. H. Use of hamster as a model to study diet-induced atherosclerosis. Nutrition & Metabolism. 2010;7:89. DOI: 10.1186/1743-7075-7-89.
11. Zhao Y., Qu H., Wang Y., Xiao W., Zhang Y., Shi D. Small rodent models of atherosclerosis. Biomedicine & Pharmacotherapy. 2020;129:110426. DOI: 10.1016/j.biopha.2020.110426.
12. Getz G. S., Reardon C. A. Diet and murine atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2006;26(2):242–249. DOI: 10.1161/01.ATV.0000201071.49029.17.
13. Thomas C., Pellicciari R., Pruzanski M., Auwerx J., Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nature Reviews Drug Discovery. 2008;7(8):678–93. DOI: 10.1038/nrd2619.
14. Insull W. Jr. Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: a scientific review. Southern Medical Journal. 2006;99(3):257–73. DOI: 10.1097/01.smj.0000208120.73327.db.
15. Davidson M. H., Toth P. P. Combination therapy in the management of complex dyslipidemias. Current Opinion in Lipidology. 2004;15(4):423–31. DOI: 10.1097/01.mol.0000137221.16160.b9.
16. Hou R., Goldberg A. C. Lowering low-density lipoprotein cholesterol: statins, ezetimibe, bile acid sequestrants, and combinations: comparative efficacy and safety. Endocrinology and metabolism clinics of North America. 2009;38(1):79–97. DOI: 10.1016/j.ecl.2008.11.007.
17. Bays H., Rhyne J., Abby S., Lai Y. L., Jones M. Lipid-lowering effects of colesevelam HCl in combination with ezetimibe. Current Medical Research and Opinion. 2006;22(11):2191–200. DOI: 10.1185/030079906X148436.
Supplementary files
|
1. Графический абстракт | |
Subject | ||
Type | Исследовательские инструменты | |
View
(1MB)
|
Indexing metadata ▾ |
Review
For citations:
Buyko E.E., Ivanov V.V., Kaidash O.A., Rybalkina O.Yu., Kiseleva E.A., Krivoshchekov S.V., Kiseleva T.L., Guriev A.M., Belousov M.V. Hypolipidemic Activity of the Polysaccharide L-rhamnopyranosyl-6-O-methyl-galacturonan in Combined Administration with HMG-CoA Reductase and Cholesterol Absorption Inhibitors. Drug development & registration. 2022;11(3):57-63. (In Russ.) https://doi.org/10.33380/2305-2066-2022-11-3-57-63