Preview

Drug development & registration

Advanced search

Natural Deep Eutectic Solvents as Alternative Flavonoid Extractants from the Sedative Plant Composition

https://doi.org/10.33380/2305-2066-2022-11-3-75-83

Abstract

Introduction. Natural deep eutectic solvents (DESs) are promising extractants for many biologically active substances from plant raw materials. They are biodegradable, safe, stable, their production is affordable and easily feasible, and the extraction efficiency is comparable to known organic solvents. In this regard, interest in deep eutectic solvents has been steadily growing in recent years, and they are being used in various fields of chemistry, pharmaceuticals and the food industry.

Aim. The purpose of this work was to study the possibility of extracting flavonoids from plant raw materials using deep eutectic solvents, as well as to compare the efficiency of their extraction with traditional solvents.

Materials and methods. The extraction of flavonoids was carried out from the collection of a plant composition consisting of the herb of motherwort cordial (common motherwort) (Leonurus cardiaca L.), the herb of St. John's wort (Hypericum perforatum L.), the herb of lemon balm (Melissa officinalis L.) and the herb of creeping thyme (thyme) (Thymus serpyllum L.) in a ratio of 4 : 2.5 : 2.5 : 1, crushed to a particle size of 2–3 mm. 21 eutectic solvents based on betaine hydrochloride and choline bitartrate as hydrogen bond acceptors were used as extractants.

Results and discussion. The extracting ability of 21 experimental compositions of DESs was studied. The influence of the water content in the composition of DES, as well as the effect of temperature on the extraction process, has been studied. Quantitative determination of flavonoids in terms of rutin was carried out by differential spectrophotometry at a wavelength of 410 ± 2 nm. The maximum yield of flavonoids was achieved using a 40 % aqueous solution of DES based on betaine hydrochloride and propylene glycol in a molar ratio of 1 : 3 at 60 °C.

Conclusion. The recovery ability of the obtained DES is comparable in efficiency and even slightly exceeds that of the classic extractant for the investigated composition – 70 % ethyl alcohol. Further development and optimization of the process of using DESs is a promising direction for the development of chemistry and pharmaceutical technology.

About the Authors

M. A. Dzhavakhyan
All-Russian Scientific Research Institute of Medicinal and Aromatic Plants; Lomonosov Moscow State University
Russian Federation

7/1, Greena str., Moscow, 117216;

1, Leninskie gory, Moscow, 119991



Yu. E. Prozhogina
Lomonosov Moscow State University
Russian Federation

1, Leninskie gory, Moscow, 119991



O. K. Pavelieva
All-Russian Scientific Research Institute of Medicinal and Aromatic Plants
Russian Federation

7/1, Greena str., Moscow, 117216



E. I. Kalenikova
Lomonosov Moscow State University
Russian Federation

1, Leninskie gory, Moscow, 119991



References

1. Turkmen N., Sari F., Velioglu Y. S. Effects of Extraction Solvents on Concentration and Antioxidant Activity of Black and Black Mate Tea Polyphenols Determined by Ferrous Tartrate and Folin-Ciocalteu Methods. Food Chem. 2006;99:835–841. DOI: 10.1016/j.foodchem.2005.08.034.

2. Hayyan M., Hashim M. A., Hayyan A., Al-Saadi M. A., Alnashef I. M., Mirghani M. E. et al. Are deep eutectic solvents benign or toxic? Chemosphere. 2006;90(7):2193–2195. DOI: 10.1016/j.chemosphere.2012.11.004.

3. Paiva P., Craveiro R., Aroso I., Martins M., Reis R. L., Duarte A. R. C. Natural deep eutectic solvents solvents for the 21st century. ACS Sustain. Chem. Eng. 2014;2(5):1063–1071. DOI: 10.1021/sc500096j.

4. Radošević K., Cvjetko Bubalo M., Gaurina Srcek V., Grgas D., Landeka Dragičević T., Radojčić Redovniković I. Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicol. Environ. Saf. 2015;112:46–53. DOI: 10.1016/j.ecoenv.2014.09.034.

5. Wen Q., Chen J. X., Tang Y. L., Wang J., Yang Z. Assessing the toxi-city and biodegradability of deep eutectic solvents. Chemosphere. 2015;132:63–69. DOI: 10.1016/j.chemosphere.2015.02.061.

6. Dai Y., van Spronsen J., Witkamp G.-J., Verpoorte R., Choi Y. H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta. 2013;766:61–68. DOI: 10.1016/j.aca.2012.12.019.

7. Andrew C., Etim E. E., Ushie O. A., Job J. N. Deep eutectic solvents: an overview of its application as a "green" extractant. IJARCS. 2017;4(6):23–30. DOI: 10.20431/2349-0403.0406003.

8. Smith E. L., Abbott A. P., Ryder K. S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014;114(21):11060–11082. DOI: 10.1021/cr300162p.

9. Zhao B.-Y., Xu P., Yang F.-X., Wu H., Zong M.-H., Lou W.-Y. Biocompatible deep eutectic solvents based on choline chloride: characterization and application to the extraction of rutin from Sophora japonica. ACS Sustain. Chem. Eng. 2015;3(11):2746–2755. DOI: 10.1021/acssuschemeng.5b00619.

10. Tang W., Li G., Chen B., Zhu T., Row K. H. Evaluating ternary deep eutectic solvents as novel media for extraction of flavonoids from Ginkgo biloba. Sep. Sci. Technol. 2016;52(1):91–99. DOI: 10.1080/01496395.2016.1247864.

11. Obluchinskaya E. D., Daurtseva A. V., Pozharitskaya O. N., Flisyuk E. V., Shikov A. N. Natural deep eutectic solvents as alternatives for extracting phlorotannins from brown algae. Pharm. Chem. J. 2019;53(3):243–247. DOI: 10.1007/s11094-019-01987-0.

12. Abbott A. P., Capper G., Davies D. L., Rasheed R. K., Tambyrajah V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003;70–71. DOI: 10.1039/b210714g.

13. Mele A., Tran C. D., De Paoli Lacerda S. H. The structure of a room-temperature ionic liquid with and without trace amounts of water: the role of C–H...O and C–H...F interactions in 1-n-butyl-3-methylimidazolium tetrafluoroborate. Angew. Chem. Int. edit. 2003;115(36):4500–4502. DOI: 10.1002/ange.200351783.

14. Francisco M., van den Bruinhorst A., Kroon M. Low-Transition-Temperature Mixtures (LTTMs): a new generation of designer solvents. Angew. Chem. Int. edit. 2013;52(11):3074–3085. DOI: 10.1002/anie.201207548.

15. Tokareva M. G., Prozhogina Y. E., Kalenikova E. I., Dzhavakhyan M. A. The pharmacognostic and pharmacological aspects of the creating of the new sedative drugs based on medicinal plant raw materials. Problems of biological, medical and pharmaceutical chemistry. 2018;21(3):3−11. (In Russ.) DOI: 10.29296/25877313-2018-03-01.

16. Tursymatova O. I., Dilmakhanova M. M. Flavonoid physicochemical properties. Science and world. 2015;5(21):30–31.

17. Babadzhanyan A. A., Kaisheva N. A., Umnyakhina I. V. Application of photometric methods in the analysis of plant medicines. Belikov readings: materials of the IV All-Russian scientific and practical conference. 2015. 17–18 p. (In Russ.)

18. Shang X., Tan J.-N., Du Y., Liu X., Zhang Z. Environmentally-friendly extraction of flavonoids from Cyclocarya paliurus (Batal.) iljinskaja leaves with deep eutectic solvents and evaluation of their antioxidant activities. Molecules. 2018;23(9):2110. DOI: 10.3390/molecules23092110.

19. Dai Y., Row K. H. Application of natural deep eutectic solvents in the extraction of quercetin from vegetables. Molecules. 2019;24(12):2300. DOI: 10.3390/molecules24122300.

20. Bajkacz S., Adamek J. Development of a method based on natural deep eutectic solvents for extraction of flavonoids from food samples. Food Anal. Methods. 2017;11:1330–1344. DOI: 10.1007/s12161-017-1118-5.

21. Peng F., Zhao Y., Li F.-Z., Zong M.-H., Lou W.-Y. The effect of deep eutectic solvents on the asymmetric hydrolysis of styrene oxide by mung bean epoxide hydrolases. Bioresources and Bioprocessing. 2018;5:5. DOI: 10.1186/s40643-018-0191-y.

22. Huang Y., Feng F., Jiang J., Qiao Y., Wu T., Voglmeir J., Chen Z.-G. Green and efficient extraction of rutin from tartary buckwheat hull by using natural deep eutectic solvents. Food Chem. 2017;221:1400–1405. DOI: 10.1016/j.foodchem.2016.11.013.

23. Mulia K., Muhammad F., Krisanti E. Extraction of vitexin from binahong (Anredera cordifolia (Ten.) Steenis) leaves using betaine - 1,4 butanediol natural deep eutectic solvent (NADES). AIP Conf. Proc. 2017;1823. DOI: 10.1063/1.4978091.

24. Bi W., Tian M., Row K. H. Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization. J. Chromatogr. A. 2013;1285:22–30. DOI: 10.1016/j.chroma.2013.02.041.

25. Abbott A. P., Al-Murshedi A. Y. M., Alshammari O. A. O. Thermodynamics of phase transfer for polar molecules from alkanes to deep eutectic solvents. Fluid Phase Equilibr. 2017;448:99–104. DOI: 10.1016/j.fluid.2017.05.008.

26. Świergiel J., Bouteiller L., Jadżyn J. Compliance of the Stokes–Einstein model and breakdown of the Stokes–Einstein–Debye model for a urea-based supramolecular polymer of high viscosity. Soft. Matter. 2014;10:8457–8463. DOI: 10.1039/c4sm01556h.

27. Dietrych-Szostak D., Oleszek W. Effect of processing on the flavonoid content in buckwheat (Fagopyrum esculentum Möench) grain. J. Agric. Food Chem. 1999:47(10):4384–4387. DOI: 10.1021/jf990121m.


Supplementary files

1. Графический абстракт
Subject
Type Исследовательские инструменты
View (1MB)    
Indexing metadata ▾

Review

For citations:


Dzhavakhyan M.A., Prozhogina Yu.E., Pavelieva O.K., Kalenikova E.I. Natural Deep Eutectic Solvents as Alternative Flavonoid Extractants from the Sedative Plant Composition. Drug development & registration. 2022;11(3):75-83. (In Russ.) https://doi.org/10.33380/2305-2066-2022-11-3-75-83

Views: 2229


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)