Preview

Drug development & registration

Advanced search

Development and Validation of HPLC-UV Method for the Determination of Favipiravir in Human Plasma

https://doi.org/10.33380/2305-2066-2022-11-3-220-229

Abstract

Introduction. Coronavirus disease (COVID-19) is an acute infectious disease caused by SARS-CoV-2 (severe acute respiratory syndrome-related coronavirus 2). Favipiravir is a synthetic prodrug with antiviral activity used for the treatment of COVID-19. There are oral and parenteral dosage forms of favipiravir. Compared with oral administration, parenteral administration has some advantages. Developing a method for the determination of favipiravir in human blood plasma is necessary for performing the analytical part of clinical studies of favipiravir for parenteral administration as an infusion, studying pharmacokinetics, and choosing the optimal dosage of the drug.

Aim. The aim of this study is to develop and validate a method for quantitative determination of favipiravir in human plasma by high-performance liquid chromatography with ultraviolet detection (HPLC-UV) for pharmacokinetic studies.

Materials and methods. Determination of favipiravir in human plasma by HPLC-UV. The UV detection was set at 323 ± 2 nm. The samples were processed by methanol protein precipitation. Internal standard: raltegravir. Mobile phase: 0.1 % formic acid in water with 0.08 % aqueous ammonia (eluent A), 0.1 % formic acid in acetonitrile with 0.08 % aqueous ammonia (eluent B). Column: Phenomenex Kinetex®, C18, 150 × 4.6 mm, 5 μm. Analytical range: 0.25–200.00 μg/mL.

Results and discussion. This method was validated by selectivity, calibration curve, accuracy, precision, spike recovery, the lower limit of quantification, carry-over effect and stability.

Conclusion. We developed and validated the method of quantitative determination of favipiravir in human plasma by HPLC-UV. The analytical range was 0.25–200.00 μg/mL in human plasma. The method could be applied in pharmacokinetics studies of favipiravir.

About the Authors

T. N. Komarov
LLC "CPHA"
Russian Federation

20/3, Nauchny proezd, Moscow, 117246



P. K. Karnakova
LLC "CPHA"
Russian Federation

20/3, Nauchny proezd, Moscow, 117246



O. A. Archakova
LLC "CPHA"
Russian Federation

20/3, Nauchny proezd, Moscow, 117246



D. S. Shchelgacheva
LLC "CPHA"
Russian Federation

20/3, Nauchny proezd, Moscow, 117246



N. S. Bagaeva
LLC "CPHA"
Russian Federation

20/3, Nauchny proezd, Moscow, 117246



I. E. Shohin
LLC "CPHA"
Russian Federation

20/3, Nauchny proezd, Moscow, 117246



K. Ya. Zaslavskaya
LLC "PROMOMED RUS"
Russian Federation

13/1, Prospekt Mira, Moscow, 129090



P. A. Bely
LLC "PROMOMED RUS"
Russian Federation

13/1, Prospekt Mira, Moscow, 129090



References

1. Yu Y., Lau M. M., Lau J. T. Application of the protection motivation theory to understand determinants of compliance with the measure of banning gathering size >4 in all public areas for controlling COVID-19 in a Hong Kong Chinese adult general population. Plos one. 2022;17(5):e0268336. DOI: 10.1371/journal.pone.0268336.

2. Zaplatnikov A. L., Burceva E. I., Girina A. A., Svincickaja V. I., Lepiseva I. V. active specific immunoprophylaxis of influenza in the context of the covid-19 pandemic and the beginning of vaccination against coronavirus infection caused by the SARS-COV-2 virus. Pediatrija. Consilium Medicum. 2020;4:12–16. (In Russ.) DOI: 10.26442/26586630.2020.4.200580.

3. Chenchula S., Karunakaran P., Sharma S., Chavan M. Current evidence on efficacy of COVID-19 booster dose vaccination against the Omicron variant: A systematic review. Journal of Medical Virology. 2022;94(7):2969–2976. DOI: 10.1002/jmv.27697.

4. Tseng H. F., Ackerson B. K., Luo Y., Sy L. S., Talarico C. A., Tian Y., Bruxvoort K. J., Tubert J. E., Florea A., Ku J. H., Lee G. S. Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants. Nature Medicine. 2022;28(5):1063–1071. DOI: 10.1038/s41591-022-01818-y.

5. Zhao L., Zhong W. Mechanism of action of favipiravir against SARS-CoV-2: Mutagenesis or chain termination? The Innovation. 2021;2(4):100165. DOI: 10.1016/j.xinn.2021.100165.

6. Pavlova V., Hristova S., Uzunova K., Vekov T. A review on the mechanism of action of favipiravir and hydroxychloroquine in COVID-19. Res. Rev. Insights. 2021;5:1–7. DOI: 10.15761/RRI.1000167.

7. Cakir B. K., Firat O., Demirkan K. Administration of Potential Medications for COVID-19 Treatment Through Feeding Tube. Turkish Journal of Pharmaceutical Sciences. 2021;18(3):250. DOI: 10.4274/tjps.galenos.2021.52223.

8. Balykova L. A., Zaslavskaja K. Ja., Pavelkina V. F., Pjataev N. A., Selezneva N. M., Kirichenko N. V., Ivanova A. Ju., Rodoman G. V., Kolontarev K. B., Skrupskij K. S., Simakina E. N. effectiveness and safety of favipiravir infusion in patients hospitalized with COVID-19. Pharmacy & Pharmacology. 2022;10(1):113–126. (In Russ.) DOI: 10.19163/2307-9266-2022-10-1-113-126.

9. Hailat M., Al-Ani I., Hamad M., Zakareia Z., Abu Dayyih W. Development and Validation of a Method for Quantification of Favipiravir as COVID-19 Management in Spiked Human Plasma. Molecules. 2021;26(13):3789. DOI: 10.3390/molecules26133789.

10. Abdallah I. A., Hammad S. F., Bedair A., Elshafeey A. H., Mansour F. R. Determination of favipiravir in human plasma using homogeneous liquid–liquid microextraction followed by HPLC/UV. Bioanalysis. 2021;14(4):205–216. DOI: 10.4155/bio-2021-0219.

11. Duse P. V., G Baheti K. G. Bioanalytical Method Development and Validation for the Determination of Favipiravir in Spiked Human Plasma by using RP-HPLC. Journal of Pharmaceutical Research International. 2021;33(47A):275–281. DOI: 10.9734/JPRI/2021/v33i47A33014.

12. Abdallah I. A., Hammad S. F., Bedair A., Mansour F. R. Menthol-assisted homogenous liquid-liquid microextraction for HPLC/UV determination of favipiravir as an antiviral for COVID-19 in human plasma. Journal of Chromatography B. 2022;1189:123087. DOI: 10.1016/j.jchromb.2021.123087.

13. Megahed S., Habib A., Hammad S., Kamal A. Chemometric Approach Based on Factorial and Box-Behnken Designs for Determination of Anti Coronavirus Drug; Favipiravir in Bulk and Spiked Human Plasma by Green HPLC Method. Turkish Journal of Analytical Chemistry. 2021;3(2):70–78. DOI: 10.51435/turkjac.963652.

14. Morsy M. I., Nouman E. G., Abdallah Y. M., Zainelabdeen M. A., Darwish M. M., Hassan A. Y., Gouda A. S., Rezk M. R., Abdel-Megied A. M., Marzouk H. M. A Novel LC-MS/MS Method for Determination of the Potential Antiviral Candidate Favipiravir for the Emergency Treatment of SARS-CoV-2 Virus in Human Plasma: Application to a Bioequivalence Study in Egyptian Human Volunteers. Journal of Pharmaceutical and Biomedical Analysis. 2021;199:114057. DOI: 10.1016/j.jpba.2021.114057.

15. Rezk M. R., Badr K. A., Abdel-Naby N. S., Ayyad M. M. A Novel, Rapid and Simple UPLC–MS/MS Method for Quantification of Favipiravir in Human Plasma: Application to a Bioequivalence Study. Biomedical Chromatography. 2021;35(7):e5098. DOI: 10.1002/bmc.5098.

16. Onmaz D. E., Abusoglu S., Onmaz M., Yerlikaya F. H., Unlu A. Development and validation of a sensitive, fast and simple LC-MS/MS method for the quantitation of favipiravir in human serum. Journal of Chromatography B. 2021;1176:122768. DOI: 10.1016/j.jchromb.2021.122768.

17. Bulduk İ. HPLC-UV method for quantification of favipiravir in pharmaceutical formulations. Acta Chromatographica. 2021;33(3):209–215. DOI: 10.1556/1326.2020.00828.


Supplementary files

1. Графический абстракт
Subject
Type Исследовательские инструменты
View (1MB)    
Indexing metadata ▾

Review

For citations:


Komarov T.N., Karnakova P.K., Archakova O.A., Shchelgacheva D.S., Bagaeva N.S., Shohin I.E., Zaslavskaya K.Ya., Bely P.A. Development and Validation of HPLC-UV Method for the Determination of Favipiravir in Human Plasma. Drug development & registration. 2022;11(3):220-229. https://doi.org/10.33380/2305-2066-2022-11-3-220-229

Views: 1635


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)