Preview

Drug development & registration

Advanced search

Validation of an enzyme-linked immunosorbent assay test-system for bevacizumab concentration determing in biological fluids

https://doi.org/10.33380/2305-2066-2024-13-2-1507

Abstract

Introduction. One of the reasons for the development of many diseases primarily malignant is the increased expression of Vascular Endothelial Growth Factor (VEGF). Bevacizumab is a drug that neutralizes the biological activity of VEGF. The molecular structure of bevacizumab is a recombinant humanized antibody. Its use reduces vascularization in the foci of increased VEGF expression which slows down tumor growth and also helps restore vision in a number of ophthalmic diseases. To determine the concentration of bevacizumab in human biological fluids a test system based on Enzyme-linked Immunosorbent Assay (ELISA) is presented.

Aim. Aim of this study is the validation of this test system.

Materials and methods. Blank sera of volunteers, bevacizumab solution, enzyme-linked immunosorbent assay, solid-phase sandwich ELISA kit, microplate photometer.

Results and discussion. The following characteristics of the test system were determined: the lower limit of quantification is 2.0 mcg/ml, the upper calibration range is up to 200 mcg/ml, the accuracy and precision within one series and between series does not exceed 20 %, and the total error of the method – 30 %, short-term stability for samples at room temperature – 6 hours, long-term stability – 14 days at –20 °C, the ability to freeze/thaw of samples is up to three times, the ability to determine samples with a concentration above the upper calibrator after diluting in 2 times.

Conclusion. The results obtained fully comply with international acceptance criteria and allow the use of the ELISA test system manufactured by LLC "Probiotek" for use in the field of clinical laboratory diagnostics.  

About the Authors

V. V. Pisarev
LLC "Probiotech"
Russian Federation

office 3–1, building 1, 2-B, 5th Kabelnaya str., Moscow, 111024



A. V. Ivanov
LLC "Probiotech"
Russian Federation

office 3–1, building 1, 2-B, 5th Kabelnaya str., Moscow, 111024



References

1. Apte R. S., Chen D. S., Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019;176(6):1248–1264. DOI: 10.1016/j.cell.2019.01.021.

2. Vincent L., Jin D. K., Karajannis M. A., Shido K., Hooper A. T., Rashbaum W. K., Pytowski B., Wu Y., Hicklin D. J., Zhu Z., Bohlen P., Niesvizky R., Rafii S. Fetal stromal-dependent paracrine and intracrine vascular endothelial growth factor-A/vascular endothelial growth factor receptor-1 signaling promotes proliferation and motility of human primary myeloma cells. Cancer Research. 2005;65(8):3185–3192. DOI: 10.1158/0008-5472.CAN-04-3598.

3. Cao Y., Guangqi E., Wang E., Pal K., Dutta S. K., Bar-Sagi D., Mukhopadhyay D. VEGF exerts an angiogenesis-independent function in cancer cells to promote their malignant progression. Cancer Research. 2012;72(16):3912–3918. DOI: 10.1158/0008-5472.CAN-11-4058.

4. Lee T.-H., Seng S., Sekine M., Hinton C., Fu Y., Avraham H. K., Avraham S. Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed VEGFR1/FLT1. PLoS Medicine. 2007;4(6):e186. DOI: 10.1371/journal.pmed.0040186.

5. Lichtenberger B. M., Tan P. K., Niederleithner H., Ferrara N., Petzelbauer P., Sibilia M. Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell. 2010;140(2):268–279. DOI: 10.1016/j.cell.2009.12.046.

6. Bhattacharya R., Ye X.-C., Wang R., Ling X., McManus M., Fan F., Boulbes D., Ellis L. M. Intracrine VEGF Signaling Mediates the Activity of Prosurvival Pathways in Human Colorectal Cancer Cells. Cancer Research. 2016;76(10):3014–3024. DOI: 10.1158/0008-5472.CAN-15-1605.

7. Chen T. T., Filvaroff E., Peng J., Marsters S., Jubb A., Koeppen H., Merchant M., Ashkenazi A. MET Suppresses Epithelial VEGFR2 via Intracrine VEGF-induced Endoplasmic Reticulum-associated Degradation. EBioMedicine. 2015;2(5):406–420. DOI: 10.1016/j.ebiom.2015.03.021.

8. Fogli S., Del Re M., Rofi E., Posarelli C., Figus M., Danesi R. Clinical pharmacology of intravitreal anti-VEGF drugs. Eye (Lond). 2018;32(6):1010–1020. DOI: 10.1038/s41433-018-0021-7.

9. Wiszniak S., Schwarz Q. Exploring the Intracrine Functions of VEGF-A. Biomolecules. 2021;11(1):128. DOI: 10.3390/biom11010128.

10. Melincovici C. S., Boşca A. B., Şuşman S., Mărginean M., Mihu C., Istrate M., Moldovan I. M., Roman A. L., Mihu C. M. Vascular endothelial growth factor (VEGF) – key factor in normal and pathological angiogenesis. Romanian Journal of Morphology and Embryology. 2018;59(2):455–467.

11. Kazemi-Lomedasht F., Behdani M., Pooshang Bagheri K., Habibi Anbouhi M., Abolhassani M., Khanahmad H., Shahbazzadeh D., Mirzahoseini H. Expression and purification of functional human vascular endothelial growth factor-A 121; the most important angiogenesis factor. Advanced Pharmaceutical Bulletin. 2014;4(4):323–328. DOI: 10.5681/apb.2014.047.

12. Azimi-Nezhad M. Vascular endothelial growth factor from embryonic status to cardiovascular pathology. Reports of Biochemistry and Molecular Biology. 2014;2(2):59–69.

13. Liu H., Tang L. Mechano-regulation of alternative splicing. Current Genomics. 2013;14(1):49–55. DOI: 10.2174/138920213804999156.

14. Kinashi H., Ito Y., Sun T., Katsuno T., Takei Y. Roles of the TGF-β–VEGF-C Pathway in Fibrosis-Related Lymphangiogenesis. International Journal of Molecular Sciences. 2018;19(9):2487. DOI: 10.3390/ijms19092487.

15. Lecarpentier E., Tsatsaris V. Angiogenic balance (sFlt-1/PlGF) and preeclampsia. Annales d'Endocrinologie. 2016;77(2):97–100. DOI: 10.1016/j.ando.2016.04.007.

16. Cao Y., Langer R., Ferrara N. Targeting angiogenesis in oncology, ophthalmology and beyond. Nature Reviews Drug Discovery. 2023;22(6):476–495. DOI: 10.1038/s41573-023-00671-z.

17. Halmos B., Burke T., Kalyvas C., Vandormael K., Frederickson A., Piperdi B. Pembrolizumab+chemotherapy versus atezolizumab+chemotherapy+/-bevacizumab for the first-line treatment of non-squamous NSCLC: A matching-adjusted indirect comparison. Lung Cancer. 2021;155:175–182. DOI: 10.1016/j.lungcan.2021.03.020.

18. Kim K. J., Li B., Winer J., Armanini M., Gillett N., Phillips H. S., Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993;362(6423):841–844. DOI: 10.1038/362841a0.

19. Ferrara N., Adamis A. P. Ten years of anti-vascular endothelial growth factor therapy. Nature Reviews Drug Discovery. 2016;15(6):385–403. DOI: 10.1038/nrd.2015.17.

20. Ellis L. M., Bevacizumab. Nature Reviews Drug Discovery. 2005;Suppl:S8–S9. DOI: 10.1038/nrd1727.

21. Di Filippo L. D., Dos Santos K. C., Hanck-Silva G., de Lima F. T., Daflon Gremião M. P., Chorilli M. A Critical Review of Biological Properties, Delivery Systems and Analytical/Bioanalytical Methods for Determination of Bevacizumab. Critical Reviews in Analytical Chemistry. 2021;51(5):445–453. DOI: 10.1080/10408347.2020.1743641.

22. Surez I., Salmern-Garca A., Cabeza J., Capitn-Vallvey L. F., Navas N. Development and Use of Specific ELISA Methods for Quantifying the Biological Activity of Bevacizumab, Cetuximab and Trastuzumab in Stability Studies. Journal of Chromatography B. 2016;1032:155–142. DOI: 10.1016/j.jchromb.2016.05.045.

23. Kamerud J., Abrams M., Klover J. An ELISA for the Quantitative Determination of Free and Partially Bound Bevacizumab in Human Serum. Eurofins Bioanalytical Service. T2047. Available at: https://www.eurofins.com/media/12142677/eurofins-bioanalytical-services_2016-aaps-nbc_beva-poster-10may16_web.pdf. Accessed: 09.06.2023.

24. Pisarev V. V., Ivanov A. V. Validation of ELISA Test-system for Trastuzumab (Herceptin, Hertikad) quantitative determination in biological fluids. Pharmacokinetics and Pharmacodynamics. 2023;(1):58–64. (In Russ.) DOI: 10.37489/2587-7836-2023-1-58-64.

25. Pisarev V. V., Ivanov A. V. Validation of a test system based on solid-phase ELISA to assess the pharmacokinetics of etanercept. Pharmaceutical Chemistry Journal. Available at: https://www.probiotech.ru/images/articles/ELISA%20etanercept%20Probiotech%202023.pdf. Accessed: 09.06.2023.

26. Han K., Peyret T., Quartino A., Gosselin N. H., Gururangan S., Casanova M., Merks J. H. M., Massimino M., Grill J., Daw N. C., Navid F., Jin J., Allison D. E. Bevacizumab dosing strategy in paediatric cancer patients based on population pharmacokinetic analysis with external validation. British Journal of Clinical Pharmacology. 2016;81(1):148–160. DOI: 10.1111/bcp.12778.

27. Han K., Peyret T., Marchand M., Quartino A., Gosselin N. H., Girish S., Allison D. E., Jin J. Population pharmacokinetics of bevacizumab in cancer patients with external validation. Cancer Chemotherapy and Pharmacology. 2016;78(2):341–351. DOI: 10.1007/s00280-016-3079-6.

28. Findlay J. W. A., Dillard R. F. Appropriate calibration curve fitting in ligand binding assays. The AAPS Journal. 2007;9(2):29. DOI: 10.1208/aapsj0902029.


Supplementary files

1. Графический абстракт
Subject
Type Other
View (1MB)    
Indexing metadata ▾

Review

For citations:


Pisarev V.V., Ivanov A.V. Validation of an enzyme-linked immunosorbent assay test-system for bevacizumab concentration determing in biological fluids. Drug development & registration. 2024;13(2):181-189. (In Russ.) https://doi.org/10.33380/2305-2066-2024-13-2-1507

Views: 733


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)