Preview

Drug development & registration

Advanced search

Experimental murine non-alcoholic steatohepatitis is associated with behavioural, cognitive, and peripheral neuronal dysfunction

https://doi.org/10.33380/2305-2066-2025-14-1-1994

Abstract

Introduction. Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), the leading causes of chronic liver disease worldwide, are associated with a wide range of psychoneurological complications and conditions. However, the causal relationship between liver and nervous system disease remains poorly understood, which warrants the development of clinically relevant and valid animal models thereof.

Aim. The objective of this work was to characterize the short- and long-term psychoneurological and peripheral neuronal deficits that complicate different stages of NAFLD/NASH in mice.

Materials and methods. 68 adult male C57Bl/6 mice were randomized into Control or NASH groups. NASH was induced over 3 (Experiment 1) or 6 (Experiment 2) mo using a combined model including a high-fat diet and low doses of carbon tetrachloride. Control group received standard chow, drinking water, and equivolume normal saline. Animal behaviour was assessed by the Open field (OF), Elevated plus maze (EPM), and Light/dark box (LDB) tests at 1, 2, 3, and 6 mo of NASH induction. Visuospatial memory was assessed by the Spontaneous alternation in the T-maze and Novel object recognition tests at 1, 2, and 3 mo of NASH modelling, and using the Barnes maze at 6 mo of NASH induction. Following 3 mo of NASH induction, needle electroneuromyography (ENMG) was performed on the gastrocnemius and biceps muscles with the electrical stimulation of the sciatic and musculocutaneous nerves, respectively. Liver pathology was confirmed by histomorphology. Statistical analysis was performed using Prism 10.2.3 and R 4.2.3 with RStudio 2024.09.0.

Results and discussion. Experimental modelling was associated with poorer overall survival (p < 0.05, p < 0.01) and substantial evidence of liver injury, i.e. cholestatic hepatitis, medio- and macrovesicular steatosis, focal necrosis and fibrosis of varying severity (p < 0.05, p < 0.01). Mice with NASH exhibited markers of elevated anxiety in the OF, EPM, and LDB tests (p < 0.05, p < 0.01), which were mostly specific to the very onset of liver disease (1 mo) as well as its later stages (6 mo). NASH was also associated with a significant decrease in spontaneous alternation at 3 mo (p < 0.01), negative object disrimination at 2 mo (p < 0.05), and poorer memory retention in the Barnes maze (p < 0.05, p < 0.01) compared with Control. ENMG data analysis revealed significantly lower peak M-wave amplitudes (p < 0.01) and threshold currents (p < 0.05) in the gastrocnemius, and increased peak latency in the biceps in the NASH group (p < 0.05).

Сonclusion. Experimental alimentary/toxic NASH in male C57Bl/6 mice is associated with increased anxiety-like behaviour, visuospatial memory acquisition and retention impairment, and evidence of axonal and demyelinating peripheral motor neuropathy.

About the Authors

V. A. Prikhodko
Saint-Petersburg State Chemical and Pharmaceutical University
Russian Federation

14A, Prof. Popova str., Saint-Petersburg, 197022



D. A. Orlyakhina
Saint-Petersburg State Chemical and Pharmaceutical University
Russian Federation

14A, Prof. Popova str., Saint-Petersburg, 197022



V. D. Petrova
Saint-Petersburg State Chemical and Pharmaceutical University
Russian Federation

14A, Prof. Popova str., Saint-Petersburg, 197022



V. E. Karev
Pediatric Research and Clinical Center for Infectious Diseases of the Federal Medical Biological Agency
Russian Federation

9, Professora Popova str., Saint Petersburg, 197022



D. Yu. Ivkin
Saint-Petersburg State Chemical and Pharmaceutical University
Russian Federation

14A, Prof. Popova str., Saint-Petersburg, 197022



S. M. Napalkova
Saint-Petersburg State Chemical and Pharmaceutical University
Russian Federation

14A, Prof. Popova str., Saint-Petersburg, 197022



S. V. Okovityi
Saint-Petersburg State Chemical and Pharmaceutical University
Russian Federation

14A, Prof. Popova str., Saint-Petersburg, 197022



References

1. Rinella M. E., Sookoian S. From NAFLD to MASLD: updated naming and diagnosis criteria for fatty liver disease. Journal of Lipid Research. 2024;65(1):100485. DOI: 10.1016/j.jlr.2023.100485.

2. Amini-Salehi E., Letafatkar N., Norouzi N., Joukar F., Habibi A., Javid M., Sattari N., Khorasani M., Farahmand A., Tavakoli S., Masoumzadeh B., Abbaspour E., Karimzad S., Ghadiri A., Maddineni G., Khosousi M. J., Faraji N., Keivanlou M.-H., Mahapatro A., Gaskarei M. A. K., Okhovat P., Bahrampourian A., Aleali M. S., Mirdamadi A., Eslami N., Javid M., Javaheri N., Pra S. V., Bakhsi A., Shafipour M., Vakilpour A., Ansar M. M., Kanagala S. G., Hashemi M., Ghazalgoo A., Kheirandish M., Porteghali P., Heidarzad F., Zeinali T., Ghanaei F. M., Hassanipour S., Ulrich M. T., Melson J. E., Patel D., Nayak S. S. Global Prevalence of Nonalcoholic Fatty Liver Disease: An Updated Review Meta-Analysis comprising a Population of 78 million from 38 Countries. Archives of Medical Research. 2024;55(6):103043. DOI: 10.1016/j.arcmed.2024.103043.

3. Younossi Z. M., Golabi P., Paik J. M., Henry A., Van Dongen C., Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology. 2023;77(4):1335–1347. DOI: 10.1097/HEP.0000000000000004.

4. Prikhodko V. A., Okovity S. V. Neuropsychiatric disorders of non-alcoholic fatty liver disease. Therapy. 2022;8(7):64–77. DOI: 10.18565/therapy.2022.7.64-77.

5. Lin Y.-K., Cai X.-R., Chen J.-Z., Hong H.-J., Tu K., Chen Y.-L., Du Q. Non-alcoholic fatty liver disease causally affects the brain cortical structure: a Mendelian randomization study. Frontiers in Neuroscience. 2024;17:1305624. DOI: 10.3389/fnins.2023.1305624.

6. Prikhodko V. A., Sysoev Yu. I., Poveryaeva M. A., Bunyat A. V., Karev V. E., Ivkin D. Yu., Sukhanov D. S., Shustov E. B, Okovityi S. V. Effects of empagliflozin and L-ornithine L-aspartate on behavior, cognitive functions, and physical performance in mice with experimentally induced steatohepatitis. Bulletin of Russian State Medical University. 2020;3:53–62. DOI: 10.24075/brsmu.2020.034.

7. Prikhodko V. A. Effects of Ornithine Aspartate and Empagliflozin on Memory Deficit Symptoms in Experimental Steatohepatitis. Journal Biomed. 2022;18(2):128–132. DOI: 10.33647/2074-5982-18-3-128-132.

8. Tsuchida T., Lee Y. A., Fujiwara N., Ybanez M., Allen B., Martins S., Fiel M. I., Goossens N., Chou H. I., Hoshida Y., Friedman S. L. A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. Journal of Hepatology. 2018;69(2):385–395. DOI: 10.1016/j.jhep.2018.03.011.

9. Walsh R. N., Cummins R. A. The Open-Field Test: A Critical Review. Psychological Bulletin. 1976;83:482–504.

10. Walf A. A., Frye C. A. The Use of the Elevated plus Maze as an Assay of Anxiety-Related Behavior in Rodents. Nature Protocols. 2007;2:322–328. DOI: 10.1038/nprot.2007.44.

11. Bourin M., Hascoët M. The Mouse Light/Dark Box Test. European Journal of Pharmacology. 2003;463:55–65. DOI: 10.1016/s0014-2999(03)01274-3.

12. Deacon R. M., Rawlins J. N. T-maze alternation in the rodent. Nature Protocols. 2006;1(1):7–12. DOI: 10.1038/nprot.2006.2.

13. Leger M., Quiedeville A., Bouet V., Haelewyn B., Boulouard M., Schumann-Bard P., Freret T. Object recognition test in mice. Nature Protocols. 2013;8(12):2531–2537. DOI: 10.1038/nprot.2013.155.

14. Barnes C. A. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. Journal of Comparative and Physiological Psychology. 1979;93(1):74–104. DOI: 10.1037/h0077579.

15. Pollari E., Prior R., Robberecht W., Van Damme P., Van Den Bosch L. In Vivo Electrophysiological Measurement of Compound Muscle Action Potential from the Forelimbs in Mouse Models of Motor Neuron Degeneration. Journal of Visualized Experiments. 2018;(136):57741. DOI: 10.3791/57741.

16. Bedossa P., Poynard T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology. 1996;24(2):289–293. DOI: 10.1002/hep.510240201.

17. Prikhodko V. A., Karev V. E., Sysoev Yu. I., Ivkin D. Yu., Okovityi S. V. A Simple Algorithm for Semiquantitative Analysis of Scored Histology Data in the R Environment, on the Example of Murine Non-Alcoholic Steatohepatitis Pharmacotherapy. Livers. 2022;2:412–424. DOI: 10.3390/livers2040031.

18. Costall B., Jones B. J., Kelly M. E., Naylor R. J., Tomkins D. M. Exploration of mice in a black and white test box: validation as a model of anxiety. Pharmacology Biochemistry and Behavior. 1989;32(3):777–785. DOI: 10.1016/0091-3057(89)90033-6.

19. Seibenhener M. L., Wooten M. C. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. Journal of Visualized Experiments. 2015;(96):e52434. DOI: 10.3791/52434.

20. Simon P., Dupuis R., Costentin J. Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behavioural Brain Research. 1994;61(1):59–64. DOI: 10.1016/0166-4328(94)90008-6.

21. Tucker L. B., McCabe J. T. Measuring Anxiety-Like Behaviors in Rodent Models of Traumatic Brain Injury. Frontiers in Behavioral Neuroscience. 2021;15:682935. DOI: 10.3389/fnbeh.2021.682935.

22. Díaz-Morán S., Estanislau C., Cañete T., Blázquez G., Ráez A., Tobeña A., Fernández-Teruel A. Relationships of open-field behaviour with anxiety in the elevated zero-maze test: Focus on freezing and grooming. World Journal of Neuroscience. 2014;4(1):1–11. DOI: 10.4236/wjns.2014.41001.

23. Eudave D. M., BeLow M. N., Flandreau E. I. Effects of high fat or high sucrose diet on behavioral-response to social defeat stress in mice. Neurobiology of Stress. 2018;9:1–8. DOI: 10.1016/j.ynstr.2018.05.005.

24. Kalueff A. V., Tuohimaa P. Grooming analysis algorithm for neurobehavioural stress research. Brain Research Protocols. 2004;13(3):151–158. DOI: 10.1016/j.brainresprot.2004.04.002.

25. Kalueff A. V., Keisala T., Minasyan A., Kuuslahti M., Tuohimaa P. Temporal stability of novelty exploration in mice exposed to different open field tests. Behavioural Processes. 2006;72(1):104–112. DOI: 10.1016/j.beproc.2005.12.011.

26. Augustsson H., Meyerson B. J. Exploration and risk assessment: a comparative study of male house mice (Mus musculus musculus) and two laboratory strains. Physiology & Behavior. 2004;81(4):685–698. DOI: 10.1016/j.physbeh.2004.03.014.

27. Sestakova N., Puzserova A., Kluknavsky M., Bernatova I. Determination of motor activity and anxiety-related behaviour in rodents: methodological aspects and role of nitric oxide. Interdisciplinary Toxicology. 2013;6(3):126–135. DOI: 10.2478/intox-2013-0020.

28. Aduema W., Osim E. E., Nwankwo A. A. Using the elevated plusmaze task in assessing anxiety and fear in swiss white mice. Journal of Complementary Medicine & Alternative Healthcare. 2018;6(1):555678.

29. Strekalova T., Evans M., Costa-Nunes J., Bachurin S., Yeritsyan N., Couch Y., Steinbusch H. M. W., Eleonore Köhler S., Lesch K.-P., Anthony D. C. Tlr4 upregulation in the brain accompanies depressionand anxiety-like behaviors induced by a high-cholesterol diet. Brain, Behavior, and Immunity. 2015;48:42–47. DOI: 10.1016/j.bbi.2015.02.015.

30. Morris R. G. M., Anderson E., Lynch G. S., Baudry M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature. 1986;319(6056):774–776. DOI: 10.1038/319774a0.

31. Morris R. G. M., Schenk F., Tweedie F., Jarrard L. E. Ibotenate Lesions of Hippocampus and/or Subiculum: Dissociating Components of Allocentric Spatial Learning. European Journal of Neuroscience. 1990;2(12):1016–1028. DOI: 10.1111/j.1460-9568.1990.tb00014.x.

32. Higarza S. G., Arboleya S., Gueimonde M., Gómez-Lázaro E., Arias J. L., Arias N. Neurobehavioral dysfunction in non-alcoholic steatohepatitis is associated with hyperammonemia, gut dysbiosis, and metabolic and functional brain regional deficits. PLoS One. 2019;14(9):e0223019. DOI: 10.1371/journal.pone.0223019.

33. Ross A. P., Bruggeman E. C., Kasumu A. W., Mielke J. G., Parent M. B. Non-alcoholic fatty liver disease impairs hippocampal-dependent memory in male rats. Physiology & Behavior. 2012;106(2):133–141. DOI: 10.1016/j.physbeh.2012.01.008.

34. Filipović B., Marković O., Đurić V., Filipović B. Cognitive Changes and Brain Volume Reduction in Patients with Nonalcoholic Fatty Liver Disease. Canadian Journal of Gastroenterology and Hepatology. 2018;2018:9638797. DOI: 10.1155/2018/9638797.

35. Nucera S., Ruga S., Cardamone A., Coppoletta A. R., Guarnieri L., Zito M. C., Bosco F., Macrì R., Scarano F., Scicchitano M., Maiuolo J., Carresi C., Mollace R., Cariati L., Mazzarella G., Palma E., Gliozzi M., Musolino V., Cascini G. L., Mollace V. MAFLD progression contributes to altered thalamus metabolism and brain structure. Scientific Reports. 2022;12(1):1207. DOI: 10.1038/s41598-022-05228-5.

36. Kim D.-G., Krenz A., Toussaint L. E., Maurer K. J., Robinson S.-A., Yan A., Torres L., Bynoe M. S. Non-alcoholic fatty liver disease induces signs of Alzheimer’s disease (AD) in wild-type mice and accelerates pathological signs of AD in an AD model. Journal of Neuroinflammation. 2016;13:1. DOI: 10.1186/s12974-015-0467-5.

37. Colognesi M., Gabbia D., De Martin S. Depression and Cognitive Impairment-Extrahepatic Manifestations of NAFLD and NASH. Biomedicines. 2020;8(7):229. DOI: 10.3390/biomedicines8070229.

38. Ghareeb D. A., Hafez H. S., Hussien H. M., Kabapy N. F. Non-alcoholic fatty liver induces insulin resistance and metabolic disorders with development of brain damage and dysfunction. Metabolic Brain Disease. 2011;26(4):253–267. DOI: 10.1007/s11011-011-9261-y.

39. Mohammed S. K., Magdy Y. M., El-Waseef D. A., Nabih E. S., Hamouda M. A., El-Kharashi O. A. Modulation of hippocampal TLR4/BDNF signal pathway using probiotics is a step closer towards treating cognitive impairment in NASH model. Physiology & Behavior. 2020;214:112762. DOI: 10.1016/j.physbeh.2019.112762.

40. An K., Starkweather A., Sturgill J., Salyer J., Sterling R. K. Association of CTRP13 With Liver Enzymes and Cognitive Symptoms in Nonalcoholic Fatty Liver Disease. Nursing Research. 2019;68(1):29–38. DOI: 10.1097/NNR.0000000000000319.

41. Celikbilek A., Celikbilek M., Bozkurt G. Cognitive assessment of patients with nonalcoholic fatty liver disease. European Journal of Gastroenterology & Hepatology. 2018;30(8):944–950. DOI: 10.1097/MEG.0000000000001131.

42. Felipo V., Urios A., Montesinos E., Molina I., Garcia-Torres M. L., Civera M., Olmo J. A., Ortega J., Martinez-Valls J., Serra M. A., Cassinello N., Wassel A., Jordá E., Montoliu C. Contribution of hyperammonemia and inflammatory factors to cognitive impairment in minimal hepatic encephalopathy. Metabolic Brain Disease. 2012;27(1):51–58. DOI: 10.1007/s11011-011-9269-3.

43. Tarter R. E., Hegedus A. M., Van Thiel D. H., Schade R. R., Gavaler J. S., Starzl T. E. Nonalcoholic cirrhosis associated with neuropsychological dysfunction in the absence of overt evidence of hepatic encephalopathy. Gastroenterology. 1984;86(6):1421–1427.

44. Broadbent N. J., Squire L. R., Clark R. E. Spatial memory, recognition memory, and the hippocampus. Proceedings of the National Academy of Sciences. 2004;101(40):14515–14520. DOI: 10.1073/pnas.0406344101.

45. Chung T., Prasad K., Lloyd T. E. Peripheral neuropathy: clinical and electrophysiological considerations. Neuroimaging Clinics of North America. 2014;24(1):49–65. DOI: 10.1016/j.nic.2013.03.023.

46. Chaudhry V., Corse A. M., O’Brian R., Cornblath D. R., Klein A. S., Thuluvath P. J. Autonomic and peripheral (sensorimotor) neuropathy in chronic liver disease: a clinical and electrophysiologic study. Hepatology. 1999;29(6):1698–1703. DOI: 10.1002/hep.510290630.

47. Kharbanda P. S., Prabhakar S., Chawla Y. K., Das C. P., Syal P. Peripheral neuropathy in liver cirrhosis. Journal of Gastroenterology and Hepatology. 2003;18(8):922–926. DOI: 10.1046/j.1440-1746.2003.03023.x.

48. Jain J., Singh R., Banait S., Verma N., Waghmare S. Magnitude of peripheral neuropathy in cirrhosis of liver patients from central rural India. Annals of Indian Academy of Neurology. 2014;17(4):409–415. DOI: 10.4103/0972-2327.144012.

49. Sun W., Zhang D., Sun J., Xu B., Sun K., Wang T., Ren C., Li J., Chen Y., Xu M., Bi Y., Xu Q., Wang W., Gu Y., Ning G. Association between non-alcoholic fatty liver disease and autonomic dysfunction in a Chinese population. QJM. 2015;108(8):617–624. DOI: 10.1093/qjmed/hcv006.

50. Greco C., Nascimbeni F., Carubbi F., Andreone P., Simoni M., Santi D. Association of Nonalcoholic Fatty Liver Disease (NAFLD) with Peripheral Diabetic Polyneuropathy: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2021;10(19):4466. DOI: 10.3390/jcm10194466.


Supplementary files

1. Графический абстракт
Subject
Type Other
View (1MB)    
Indexing metadata ▾

Review

For citations:


Prikhodko V.A., Orlyakhina D.A., Petrova V.D., Karev V.E., Ivkin D.Yu., Napalkova S.M., Okovityi S.V. Experimental murine non-alcoholic steatohepatitis is associated with behavioural, cognitive, and peripheral neuronal dysfunction. Drug development & registration. 2025;14(1):319-331. https://doi.org/10.33380/2305-2066-2025-14-1-1994

Views: 1015


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)