Development of water vapor permeability determination methodology for spray film-forming systems
https://doi.org/10.33380/2305-2066-2025-14-1-1773
Abstract
Introduction. Spray film-forming systems (SFFSs) are dosage forms that form an in situ film when sprayed. One of the key features of SFFSs is partial vapor permeability, a special case of occlusion. Various methods assess vapor permeability by determining the occlusion factor, but disparate approaches in studies prevent harmonizing results and identifying optimal parameters.
Aim. Development of a methodology for determining the vapor permeability of spray film-forming systems, measuring the occlusion factor and studying the most significant factors affecting the accuracy of determining this characteristic.
Materials and methods. Determination of vapor permeability was carried out using a special setup, consisting of a cell with water and a membrane fixed over it, on which the model composition was applied. Measurement cylinders of 25 ml (Russia) or penicillin vials with a smooth neck of 10 ml (Russia), membranes for filtration and dialysis (nylon, EPM.K, LLC RME "Technofilter", Russia), dialysis bags MEMBRA-CEL® (cellulose acetate, Viskase Companies, Inc., USA) and Sartopure® PP3 (polypropylene, Sartorius Stedim Biotech, Germany) were used. As sealants to isolate airflow around the membrane Parafilm M, C-silicone ZetaPlus L Intro Kit (Zhermack, Poland, Italy), hotmelt adhesive Master Hand (Union Source Со., Ltd., China), UV-curable material "UNIREST" (LLC "StomaDent", Russia) were used. Comparative analysis of materials was carried out on a model composition containing 0.5 % (m/o) Kollicoat® MAE 100P (BASF, Germany), 3 % (m/o) Soluplus® (BASF, Germany), 2 % (m/o) Kollisolv® PEG-400 (BASF, Germany), 70 % ethyl alcohol (SOJSC "Ferein", Belarus).
Results and discussion. The combination of Parafilm M and the presented sealants showed high performance. Synthetic membrane occlusion factor for the model substance varied depending on the membrane type from 9.35 ± 3.58 to 16.86 ± 6.09, reflecting low-medium degree of occlusion.
Conclusion. In this study optimized techniques for determining the vapor permeability for SFFS were developed. It was observed that rationalized membrane selection, consideration of the probability of moisture absorption by the membranes, method of sealing and cell calibrations, temperature and humidity levels, and vapor pressure were necessary.
About the Authors
M. M. ShumkovaRussian Federation
8/2, Trubetskaya str., Mosсow, 119991
M. V. Pomytkina
Russian Federation
8/2, Trubetskaya str., Mosсow, 119991
A. A. Ananian
Russian Federation
8/2, Trubetskaya str., Mosсow, 119991
G. Pouya
Russian Federation
8/2, Trubetskaya str., Mosсow, 119991
M. M. Agabalyan
Russian Federation
8/2, Trubetskaya str., Mosсow, 119991
E. O. Bakhrushina
Russian Federation
8/2, Trubetskaya str., Mosсow, 119991
References
1. Zurdo Schroeder I., Franke P., Schaefer U. F., Lehr C.-M. Development and characterization of film forming polymeric solutions for skin drug delivery. European Journal of Pharmaceutics and Biopharmaceutics. 2007;65(1):111–121. DOI: 10.1016/j.ejpb.2006.07.015.
2. Godse K., Dethe G., Sawant S., Sharma A., Pereira R., Ghate S., Kuvi S., Pawar V., Parekar R., Khalse M., Patel K. Clinical evaluation of the safety and tolerability of film-forming sprays in patients with psoriasis and eczema. Cureus. 2024;16(3):e57020. DOI: 10.7759/cureus.57020.
3. Umar A. K., Butarbutar M. E. T., Sriwidodo S., Wathoni N. Film-forming sprays for topical drug delivery. Drug Design, Development and Therapy. 2020;14:2909–2925. DOI: 10.2147/DDDT.S256666.
4. Pünnel L. C., Lunter D. J. Film-forming systems for dermal drug delivery. Pharmaceutics. 2021;13(7):932. DOI: 10.3390/pharmaceutics13070932.
5. Kishchenko V. M., Vernikovsky V. V., Privalov I. M., Shevchenko A. M. Films in russian medicine and cosmetology: development history, classification, technology. Pharmacy & Pharmacology. 2020;8(2):124–132. (In Russ.) DOI: 10.19163/2307-9266-2020-8-2-124-132.
6. Potoroko I. Yu., Malinin A. V., Tsaturov A. V., Kadi A. M., Bagale U. Biodegradable materials based on plant polysaccharides for food packaging. Part 2: Management recycling processes. South Ural State University Bulletin. Series: Food and Biotechnology. 2020;8(4):30–37. (In Russ.) DOI: 10.14529/food200404.
7. Umar A. K., Sriwidodo S., Maksum I. P., Wathoni N. Film-forming spray of water-soluble chitosan containing liposome-coated human epidermal growth factor for wound healing. Molecules. 2021;26(17):5326. DOI: 10.3390/molecules26175326.
8. Cazón P., Morales-Sanchez E., Velazquez G., Vázquez M. Measurement of the water vapor permeability of chitosan films: a laboratory experiment on food packaging materials. Journal of Chemical Education. 2022;99(6):2403–2408. DOI: 10.1021/acs.jchemed.2c00449.
9. Ranade S., Bajaj A., Londhe V., Babul N., Kao D. Fabrication of topical metered dose film forming sprays for pain management. European Journal of Pharmaceutical Sciences. 2017;100:132–141. DOI: 10.1016/j.ejps.2017.01.004.
10. Paradkar M., Thakkar V., Soni T., Gandhi T., Gohel M. Formulation and evaluation of clotrimazole transdermal spray. Drug Development and Industrial Pharmacy. 2015;41(10):1718–1725. DOI: 10.3109/03639045.2014.1002408.
11. Sritharadol R., Nakpheng T., Wan Sia Heng P., Srichana T. Development of a topical mupirocin spray for antibacterial and wound-healing applications. Drug Development and Industrial Pharmacy. 2017;43(10):1715–1728. DOI: 10.1080/03639045.2017.1339077.
12. Khafizova L. N., Musin I. N., Ksembaev S. S., Nesterov O. V. Physico-chemical substantiation of the effectiveness of the sorbent "Celoform" for the protection and treatment of open wound surfaces. Bulletin of the Technological University. 2015;18(9):178–182. (In Russ.)
13. Nitthikan N., Leelapornpisid P., Naksuriya O., Intasai N., Kiattisin K. Multifunctional biological properties and topical film forming spray base on Auricularia polytricha as a natural polysaccharide containing brown Agaricus bisporus extract for skin hydration. Cosmetics. 2023;10(5):145.
14. Wani A., Sanghani C., Wani S. Formulation, characterization, and in vitro evaluation of novel microemulsion-based spray for topical delivery of isotretinoin. Asian Journal of Pharmaceutical and Clinical Research. 2018;11(10):226–232. DOI: 10.22159/ajpcr.2018.v11i10.27019.
15. Bakhrushina E. O., Shumkova M. M., Sergienko F. S., Novozhilova E. V., Demina N. B. Spray Film-Forming systems as promising topical in situ Systems: A review. Saudi Pharmaceutical Journal. 2023;31(1):154–169. DOI: 10.1016/j.jsps.2022.11.014.
16. Alven S., Peter S., Mbese Z., Aderibigbe B. A. Polymer-based wound dressing materials loaded with bioactive agents: potential materials for the treatment of diabetic wounds. Polymers. 2022;14(4):724. DOI: 10.3390/polym14040724.
17. Furtado S. C., Srinivasan B., Abraham S. Wound healing concepts: contemporary practices and future perspectives. International Journal of Applied Pharmaceutics. 2020;12(5):7–15. DOI: 10.22159/ijap.2020v12i5.38588.
Supplementary files
|
1. Графический абстракт | |
Subject | ||
Type | Исследовательские инструменты | |
View
(1MB)
|
Indexing metadata ▾ |
Review
For citations:
Shumkova M.M., Pomytkina M.V., Ananian A.A., Pouya G., Agabalyan M.M., Bakhrushina E.O. Development of water vapor permeability determination methodology for spray film-forming systems. Drug development & registration. 2025;14(1):181-192. (In Russ.) https://doi.org/10.33380/2305-2066-2025-14-1-1773