Automated quantitative analysis of coat and skin coloration in laboratory animals
https://doi.org/10.33380/2305-2066-2025-14-3-2115
Abstract
Introduction. Analysis of animal coat and skin coloration can be used as an auxiliary method for assessment of various conditions and processes that are accompanied by changes in coloration, intensity, proportion of coat colors or areas covered by fur, undercoat, and skin. Performing coloration analysis in preclinical studies requires new straightforward, fast, and easily standardizable digital methods that yield reproducible data suitable for statistical processing.
Aim. In this work, we aimed to develop and test a novel algorithm for quantitative analysis of coat and skin coloration in laboratory animals using R programming language.
Materials and methods. To analyse fur coloration, we used digital photographs of female guinea pigs, one bicolor and one calico, that were taken under artificial lighting against a plain contrasting background. Analysis of fur and skin area proportion was carried out re-using photographs of a male mouse with depilation alopecia model, which were obtained during a previously published preclinical study. Colorimetric image analysis was performed by hierarchical k-means color clustering in RGB space and cluster area calculation using the recolorize v0.2.0 function package for R v4.2.3 with RStudio v2025.05.0.
Results and discussion. The algorithm for colorimetric analysis included 3 steps: 1) preprocessing images and masking the background; 2) hierarchical color clustering and reclustering; 3) calculating absolute and relative color cluster areas. Using the described algorithm, we found the color area proportion to be 46.1 % agouti vs. 53.9 % yellow for the bicolor guinea pig, and 9.1 % red vs. 19.6 % white vs. 71.3 % black, for the calico one. In the male mouse subjected to depilation, we characterized the dynamics of proportion between areas of hairless skin and skin with regrown hair across a 28 day-long period. We found a decrease in relative of hairless skin area between the 0th, 9th, and 17th days post-depilation from 8.7 to 7.4 % and to 0.0 %, respectively (p < 0.05 for 17th day vs. 0th and 9th).
Сonclusion. In this work, we described and tested on model photographs an algorithm for analysis of coat and skin coloration using hierarchical color clustering. The algorithm does not require the use of specialized software, is fast and straightforward, and can be employed for batch image processing to obtain quantitative data for further statistical analysis.
About the Authors
V. A. PrikhodkoRussian Federation
14A, Professora Popova str., Saint-Petersburg, 197022
U. V. Nogaeva
Russian Federation
14A, Professora Popova str., Saint-Petersburg, 197022
D. Yu. Ivkin
Russian Federation
14A, Professora Popova str., Saint-Petersburg, 197022
S. V. Okovityi
Russian Federation
14A, Professora Popova str., Saint-Petersburg, 197022
References
1. Caro T., Mallarino R. Coloration in Mammals. Trends in Ecology and Evolution. 2020;35(4):357–366. DOI: 10.1016/j.tree.2019.12.008.
2. Rochin L., Hurbain I., Serneels L., Fort C., Watt B., Leblanc P., Marks M. S., De Strooper B., Raposo G., van Niel G. BACE2 processes PMEL to form the melanosome amyloid matrix in pigment cells. Proceedings of the National Academy of Sciences. 2013;110(26):10658–10663. DOI: 10.1073/pnas.1220748110.
3. Tharmarajah G., Faas L., Reiss K., Saftig P., Young A., Van Raamsdonk C. D. Adam10 haploinsufficiency causes freckle-like macules in Hairless mice. Pigment Cell and Melanoma Research. 2012;25(5):555–565. DOI: 10.1111/j.1755-148X.2012.01032.x.
4. Papalazarou V., Swaminathan K., Jaber-Hijazi F., Spence H., Lahmann I., Nixon C., Salmeron-Sanchez M., Arnold H.-H., Rottner K., Machesky L. M. The Arp2/3 complex is critical for colonisation of the mouse skin by melanoblasts. Development. 2020;147(22):dev194555. DOI: 10.1242/dev.194555.
5. Fan R., Gao J. Establishment of a promising vitiligo mouse model for pathogenesis and treatment studies. Diagnostic Pathology. 2024;19(1):92. DOI: 10.1186/s13000-024-01520-2.
6. Lenartowicz M., Krzeptowski W., Lipiński P., Grzmil P., Starzyński R., Pierzchała O., Møller L. B. Mottled Mice and Non-Mammalian Models of Menkes Disease. Frontiers in Molecular Neuroscience. 2015;8:72. DOI: 10.3389/fnmol.2015.00072.
7. Sundberg J. P., Wang E. H. C., McElwee K. J. Current Protocols: Alopecia Areata Mouse Models for Drug Efficacy and Mechanism Studies. Current Protocols. 2024;4(8):e1113. DOI: 10.1002/cpz1.1113.
8. Shipkowski K. A., Hubbard T. D., Ryan K., Waidyanatha S., Cunny H., Shockley K. R., Allen J. L., Toy H., Levine K., Harrington J., Betz L., Sparrow B., Roberts G. K. Shortterm toxicity studies of thallium (I) sulfate administered in drinking water to Sprague Dawley rats and B6C3F1/N mice. Toxicology Reports. 2023;10:621–632. DOI: 10.1016/j.toxrep.2023.05.003.
9. Chen C. C., Murray P. J., Jiang T. X., Plikus M. V., Chang Y. T., Lee O. K., Widelitz R. B., Chuong C. M. Regenerative hair waves in aging mice and extra-follicular modulators follistatin, dkk1, and sfrp4. The Journal of Investigative dermatology. 2014;134(8):2086–2096. DOI: 10.1038/jid.2014.139.
10. Kreienkamp R., Gonzalo S. Metabolic Dysfunction in Hutchinson-Gilford Progeria Syndrome. Cells. 2020;9(2):395. DOI: 10.3390/cells9020395.
11. Sakamoto M., Nakano T., Tsuge I., Yamanaka H., Katayama Y., Shimizu Y., Note Y., Inoie M., Morimoto N. Dried human cultured epidermis accelerates wound healing in diabetic mouse skin defect wounds. Scientific Reports. 2022;12(1):3184. DOI: 10.1038/s41598-022-07156-w.
12. Rahul V. G., Ellur G., Gaber A. A., Govindappa P. K., Elfar J. C. 4-aminopyridine attenuates inflammation and apoptosis and increases angiogenesis to promote skin regeneration following a burn injury in mice. Cell Death Discovery. 2024;10(1):428. DOI: 10.1038/s41420-024-02199-6
13. Semivelichenko E. D., Ermolaeva A. A., Ponomarenko V. V., Novoselov A. V., Plisko G. A., Ivkin D. Yu., Antonov V. G., Karev V. E., Titovich I. A., Eremin A. V. Study of the Effectiveness of Drugs Based on Molecular Complexes of Adenosine-polymer on the Model of Thermal Burn. Drug development & registration. 2022;11(3):209–219. (In Russ.) DOI: 10.33380/2305-2066-2022-11-3-209-219.
14. Voisey J., van Daal A. Agouti: from mouse to man, from skin to fat. Pigment Cell Research. 2002;15(1):10–18. DOI: 10.1034/j.1600-0749.2002.00039.x.
15. Cropley J. E., Suter C. M., Beckman K. B., Martin D. I. K. Germ-line epigenetic modification of the murine Avy allele by nutritional supplementation. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(46):17308–17312. DOI: 10.1073/pnas.0607090103.
16. Ounpraseuth S., Rafferty T. M., McDonald-Phillips R. E., Gammill W. M., Siegel E. R., Wheeler K. L., Nilsson E. A., Cooney C. A. A method to quantify mouse coat-color proportions. PLoS ONE. 2009;4(4):e5414. DOI: 10.1371/journal.pone.0005414.
17. Lavado A., Olivares C., García-Borrón J. C., Montoliu L. Molecular basis of the extreme dilution mottled mouse mutation: a combination of coding and noncoding genomic alterations. The Journal of Biological Chemistry. 2005;280(6):4817–4824. DOI: 10.1074/jbc.M410399200.
18. Weller H. I., Hiller A. E., Lord N. P., Van Belleghem S. M. recolorize: An R package for flexible colour segmentation of biological images. Ecology Letters. 2024;27(2):e14378. DOI: 10.1111/ele.14378.
19. Nogaeva U. V., Ivkin D. Yu., Plisko G. A., Flisyuk E. V., Kovanskov V. E., Shtyrlin Yu. G., Sidorov K. O. Comparative efficacy of transdermal forms for alopecia therapy. Drug Development & Registration. 2021;10(4):171–178. (In Russ.) DOI: 10.33380/2305-2066-2021-10-4(1)-171-178.
20. Wickham H., Averick M., Bryan J., Chang W., McGowan L. D., François R., Grolemund G., Hayes A., Henry L., Hester J., Kuhn M., Pedersen T. L., Miller E., Bache S. M., Müller K., Ooms J., Robinson D., Seidel D. P., Spinu V., Takahashi K., Vaughan D., Wilke C., Woo K., Yutani H. Welcome to the tidyverse. Journal of Open Source Software. 2019;4(43):1686. DOI: 10.21105/joss.01686.
21. Badano A., Revie C., Casertano A., Cheng W. C., Green P., Kimpe T., Krupinski E., Sisson C., Skrøvseth S., Treanor D., Boynton P., Clunie D., Flynn M. J., Heki T., Hewitt S., Homma H., Masia A., Matsui T., Nagy B., Nishibori M., Penczek J., Schopf T., Yagi Y., Yokoi H, Summit on Color in Medical Imaging. Consistency and standardization of color in medical imaging: a consensus report. Journal of Digital Imaging. 2015;28(1):41–52. DOI: 10.1007/s10278-014-9721-0.
22. Savelyev D. S., Gorodkov S. Y., Goremykin I. V. Standardization of color measurement in the medical photography in clinical practice. Russian Journal of Pediatric Surgery. 2024;28(5):460–471. (In Russ.) DOI: 10.17816/ps803.
23. Bonetto A., Andersson D. C., Waning D. L. Assessment of muscle mass and strength in mice. BoneKEy Reports. 2015;4:732. DOI: 10.1038/bonekey.2015.101.
Supplementary files
|
1. Графический абстракт | |
Subject | ||
Type | Исследовательские инструменты | |
View
(980KB)
|
Indexing metadata ▾ |
Review
For citations:
Prikhodko V.A., Nogaeva U.V., Ivkin D.Yu., Okovityi S.V. Automated quantitative analysis of coat and skin coloration in laboratory animals. Drug development & registration. (In Russ.) https://doi.org/10.33380/2305-2066-2025-14-3-2115