Preview

Drug development & registration

Advanced search

Development and validation of esomeprazole magnesium trihydrate determination in workplace air using HPLC-MS/MS

https://doi.org/10.33380/2305-2066-2025-14-3-2090

Abstract

Introduction. Esomeprazole is a proton pump inhibitor widely used in the treatment of acid-related diseases of the upper gastrointestinal tract. Upon inhalation exposure, it is classified as a substance of the highest hazard class, which requires monitoring its concentration in the workplace air at pharmaceutical enterprises. Despite the availability of methods for the quantitative analysis of esomeprazole in various matrices in the scientific literature, there are currently no methods for analyzing this substance in workplace or industrial air.

Aim. To develop a method for the quantitative determination of esomeprazole magnesium trihydrate in workplace air using HPLC-MS/MS.

Materials and methods. Air samples were collected using membrane filters with a diameter of 25 mm at a flow rate of 5,0 L/min. The analysis was performed using reference standards of esomeprazole magnesium trihydrate and carbamazepine. Chromatographic separation was carried out on a C18 column (2,5 μm, 100 × 4,6 mm). Detection was performed using a mass-selective detector in positive electrospray ionization mode by multiple reaction monitoring. MRM transitions were: 346,1 → 198,1 m/z for esomeprazole and 237,1 → 194,1 m/z for carbamazepine.

Results and discussion. The method was validated according to the following parameters: suitability of the chromatographic system (the number of theoretical plates, N, for esomeprazole is at least 13170 and for carbamazepine, at least 5617), the asymmetry factor (As) for both substances does not exceed 1,36 and 1,41, respectively; limit of detection: 17 ng/mL; lower limit of quantification: 50 ng/mL; specificity (the response of interfering peaks for esomeprazole at most 1,2 % and for carbamazepine at most 0,25 %); linearity in the range of 50–5000 ng/mL (determination coefficient (R2) of at least 0,9995, accuracy from 92,8 to 106,1 %, and relative standard deviation (RSD, %) at most 4,2 %); intralaboratory accuracy (from 99,6 to 102,2 %) and interlaboratory accuracy (from 100,5 to 101,6 %); intralaboratory precision (RSD at most 4,3 %) and interlaboratory precision (RSD at most 5,8 %). All validation parameters met the acceptance criteria. The stability of esomeprazole on filters was confirmed for up to three months of storage.

Conclusion. The development and implementation of the method enabled quantitative analysis of esomeprazole in workplace air and the assessment of the safety of the production process in accordance with hygienic requirements.

About the Authors

A. Yu. Savchenko
National Research Nuclear University MEPhI
Russian Federation

31, Kashirskoe shosse, Moscow, 115409



P. A. Zhiltcov
Obninsk Institute for Nuclear Power Engineering, a branch of National Research Nuclear University MEPhI (IATE MEPhI)
Russian Federation

1, Studgorodok territory, Kaluga region, Obninsk, 249039



I. I. Kartamyshev
Limited Liability Company "InnoPharmaTech"
Russian Federation

11/11, Ordzhonikidze str., Moscow, 115419



D. T. Guranda
Limited Liability Company "Farm Innovation Technologies"
Russian Federation

2/11, Gorbunova str., Moscow, 121596



M. V. Nikulin
Limited Liability Company "Farm Innovation Technologies"
Russian Federation

2/11, Gorbunova str., Moscow, 121596



References

1. Karazei E. A. Proton pump inhibitors in the treatment of acid peptic disorders: focus on Esomeprazole. Meditsinskie novosti. 2015;9:14–19. (In Russ.)

2. Pyo Y.-C., Nguyen T. N., Lee Y.-S., Choi Y.-E., Park J.-S. Design of esomeprazole solid dispersion for improved dissolution and bioavailability using the supercritical anti-solvent technique. Journal of Drug Delivery Science and Technology. 2023;88:104889. DOI: 10.1016/j.jddst.2023.104889.

3. Rashid Z., Ranjha N. M., Rashid F., Raza H. Pharmacokinetic evaluation of microgels for targeted and sustained delivery of acid labile active pharmaceutical agent in animal model. Journal of Drug Delivery Science and Technology. 2020;57:101770. DOI: 10.1016/j.jddst.2020.101770.

4. Yoo H. W., Hong S. J., Kim S. H. Helicobacter pylori Treatment and Gastric Cancer Risk After Endoscopic Resection of Dysplasia: A Nationwide Cohort Study. Gastroenterology. 2024;166(2):313-322. DOI: 10.1053/j.gastro.2023.10.013.

5. Pollmann L., Linnemann J., Pollmann N. S., Jürgens C., Schmeding M. Preoperative proton pump inhibitor therapy and anastomotic leak after esophagectomy–a new perspective. Langenbeck’s Archives of Surgery. 2025;410;157. DOI: 10.1007/s00423-025-03727-3.

6. Yurenev G. L., Partsvania-Vinogradova E. V., Lebedeva E. G., Zaborovskii A. V., Tararina L. A. Features of classical S-enantiomer of omeprazole molecules (esomeprazole) in the treatment of gastroesophageal reflux disease. Consilium Medicum. 2016;18(8):27–31. (In Russ.)

7. Amin K. F. M. Greenness-sustainability metrics for assessment smart-chemometric spectrophotometric strategy for evaluation of the combination of six gastric proton-pump inhibitors with two selected impurities. MethodsX. 2024;12:102670. DOI: 10.1016/j.mex.2024.102670.

8. Carrouel F., Dziadzko M., Grégoire C., Galinski M., Dussart C., Lvovschi V.-E. Relevance of early management by proton-pump inhibitor in acute upper gastro-intestinal tract disorder: A scoping review. Biomedicine & Pharmacotherapy. 2023;167:115523. DOI: 10.1016/j.biopha.2023.115523.

9. Kumar A., Kumar R., Flanagan J., Långström B., Björndahl L., Darreh-Shori T. Esomeprazole reduces sperm motility index by targeting the spermic cholinergic machinery: A mechanistic study for the association between use of proton pump inhibitors and reduced sperm motility index. Biochemical Pharmacology. 2020;182:114212. DOI: 10.1016/j.bcp.2020.114212.

10. Helgadóttir H., Lund S. H., Björnsson E., Gizurarson S. S., Waldum H. Sa1208 – Serum Concentration and Pharmacokinetics of Single and Repeated Oral Doses of Esomeprazole and Gastrin Elevation in Healthy Males and Females. Gastroenterology. 2019;156(6);S-308. DOI: 10.1016/s0016-5085(19)37590-0.

11. Kosman V. M., Karlina M. V., Mazukina E. V., Globenko A. A., Jain E. A., Makarova M. N., Makarov V. G. Preclinical evaluation of esomeprazole safety and toxicokinetics. Safety and Risk of Pharmacotherapy. 2023;11(2):176–190. (In Russ.) DOI: 10.30895/2312-7821-2023-11-2-342.

12. Rao M. N., Krishna K. B. M., Babu B. H. Development and validation of a stability indicating HPLC method for the simultaneous analysis of esomeprazole and itopride in bulk and in capsules. Journal of Applied Pharmaceutical Science. 2016;6(02):072-080. DOI: 10.7324/japs.2016.60210.

13. Zanitti L., Ferretti R., Gallinella B., Torre F. L., Sanna M. L., Mosca A., Cirilli R. Direct HPLC enantioseparation of omeprazole and its chiral impurities: Application to the determination of enantiomeric purity of esomeprazole magnesium trihydrate. Journal of pharmaceutical and biomedical analysis. 2010;52(5):665–671. DOI: 10.1016/j.jpba.2010.02.021.

14. Liu R., Li P., Xiao J., Yin Y., Sun Z., Bi K., Li Q. A fast, sensitive, and high throughput method for the determination of esomeprazole in dog plasma by UHPLC– MS/MS: Application to formulation development of the compound preparation of esomeprazole. Journal of Chromatography B. 2017;1068–1069:352–357. DOI: 10.1016/j.jchromb.2017.11.002.

15. Lun J., Ma S., Xue M., Zhao P., Song, Y., Guo, X. Simultaneous enantiomeric analysis of five proton-pump inhibitors in soil and sediment using a modified QuEChERS method and chiral high performance liquid chromatography coupled with tandem mass spectrometry. Microchemical Journal. 2021;160:105625. DOI: 10.1016/j.microc.2020.105625.

16. Pozharnov I. A., Simakov A. S., Shulga N. A., Savchenko A. Yu., Perederyaev O. I., Synkova L. S., Medvedev Yu. V., Fisher E. N. Hygienic monitoring of working area air pollution by particulate matter of ticagrelor in the pharmaceutical factory. Drug development & registration. 2022;11(2):153–158. (In Russ.) DOI: 10.33380/2305-2066-2022-11-2-153-158.

17. Pozharnov I. A., Simakov A. S., Shatilina A. A., Ramenskaya G. V. Organization of hygienic monitoring of working area air pollution by particulates in pharmaceutical industries (review). Drug development & registration. 2022;11(1):165– 173. (In Russ.) DOI: 10.33380/2305-2066-2022-11-1-165-173.


Supplementary files

1. Графический абстракт
Subject
Type Other
View (1MB)    
Indexing metadata ▾

Review

For citations:


Savchenko A.Yu., Zhiltcov P.A., Kartamyshev I.I., Guranda D.T., Nikulin M.V. Development and validation of esomeprazole magnesium trihydrate determination in workplace air using HPLC-MS/MS. Drug development & registration. (In Russ.) https://doi.org/10.33380/2305-2066-2025-14-3-2090

Views: 16


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)