Preview

Drug development & registration

Advanced search

Physiologically-based pharmacokinetic modeling: past, present and future (review)

https://doi.org/10.33380/2305-2066-2025-14-4-2183

Abstract

Introduction. Physiologically-based pharmacokinetic modelling is a method that allows predicting the distribution of drugs in the body based on anatomical and physiological parameters. This approach has become widespread only with the development of computing technologies. Today PBPK is actively used by regulatory agencies to optimize clinical trials and reduce the number of animal experiments.

Text. PBPK models represent the body as a system of interconnected compartments corresponding to organs and tissues. Three main types of models are described: Full PBPK, which maximizes accuracy at the expense of detail; Reduced PBPK, which reduces computational complexity; Hybrid PBPK, which combines both approaches to balance accuracy and efficiency. Key parameters for model building are discussed in detail: physicochemical properties of substances (LogP, pKa, solubility), physiological parameters (organ volumes, blood flow, enzyme activity and membrane transport proteins) and pharmacokinetic parameters (volume of distribution, clearance). Special attention is given to the Gordon Amidon absorption and transit model (CAT/ACAT) and its integration into PBPK modeling. Procedures for model reliability are given calibration (parameter tuning), validation (assessment of predictive ability), qualification (confirmation of fitness for purpose), and verification (verification of mathematical correctness). Statistical metrics for assessing accuracy are described. An overview of popular PBPK modeling software such as GastroPlus, Simcyp, PK-Sim, SimBiology, and Mrgsolve is presented, highlighting their main advantages and applications in the pharmaceutical industry and academic research.

Conclusion. PBPK modeling is on the threshold of a new era where its application will go beyond traditional pharmacokinetics, becoming an integral part of digital medicine, biotechnology and precision therapeutics. In the future, such technologies will not only be able to predict the behavior of drugs in the body, but also become the basis for virtual clinical trials, which will fundamentally change the approach to drug development and application.

About the Authors

N. S. Bagaeva
Limited Liability Company "Center of Pharmaceutical Analytics" (LLC "CPHA")
Russian Federation

8, Simferopolsky bulvar, Moscow, 117246



E. I. Evtyukhina
Limited Liability Company "Center of Pharmaceutical Analytics" (LLC "CPHA")
Russian Federation

8, Simferopolsky bulvar, Moscow, 117246



D. S. Shchelgacheva
Limited Liability Company "Center of Pharmaceutical Analytics" (LLC "CPHA")
Russian Federation

8, Simferopolsky bulvar, Moscow, 117246



M. O. Popova
Limited Liability Company "Center of Pharmaceutical Analytics" (LLC "CPHA")
Russian Federation

8, Simferopolsky bulvar, Moscow, 117246



O. A. Archakova
Limited Liability Company "Center of Pharmaceutical Analytics" (LLC "CPHA")
Russian Federation

8, Simferopolsky bulvar, Moscow, 117246



T. N. Komarov
Limited Liability Company "Center of Pharmaceutical Analytics" (LLC "CPHA"); Saint-Petersburg State Chemical and Pharmaceutical University
Russian Federation

8, Simferopolsky bulvar, Moscow, 117246; 
14A, Prof. Popova str., Saint-Petersburg, 197022



A. N. Marchenko
I. M. Sechenov First MSMU of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

8/2, Trubetskaya str., Mosсow, 119991



E. A. Malashenko
I. M. Sechenov First MSMU of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

8/2, Trubetskaya str., Mosсow, 119991



I. E. Shohin
Limited Liability Company "Center of Pharmaceutical Analytics" (LLC "CPHA"); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

8, Simferopolsky bulvar, Moscow, 117246; 
31, Kashirskoe shosse, Moscow, 115409



References

1. Kolbin A. S., Radaeva K. S. Drug Dosing in Pediatrics: Possible Approaches. Current Pediatrics. 2023;22(4):289–297. (In Russ.). DOI: 10.15690/vsp.v22i4.2593.

2. Teorell T. Kinetics of distribution of substances administered to the body. Arch Intern Pharmacodyn. 1937;57:205–240.

3. Himmelstein K. J., Lutz R. J. A review of the applications of physiologically based pharmacokinetic modeling. Journal of Pharmacokinetics and Biopharmaceutics. 1979;7(2):127–145. DOI: 10.1007/BF01059734.

4. Bischoff K. B., Dedrick R. L. , Zaharko D. S., Longstreth J. A. Methotrexate pharmacokinetics. Journal of Pharmaceutical Sciences. 1971;60(8):1128–1133. DOI: 10.1002/jps.2600600803.

5. Andersen M. E., Clewell H. J. 3rd, Gargas M. L., Smith F. A., Reitz R. H. Physiologically based pharmacokinetics and the risk assessment process for methylene chloride. Toxicology and Applied Pharmacology. 1987;87(2):185–205. DOI: 10.1016/0041-008x(87)90281-x.

6. Davis N. R., Mapleson W. W. A physiological model for the distribution of injected agents, with special reference to pethidine. British Journal of Anaesthesia. 1993;70(3):248–258. DOI: 10.1093/bja/70.3.248.

7. Benowitz N., Forsyth R. P., Melmon K. L., Rowland M. Lidocaine disposition kinetics in monkey and man; I. Prediction by a perfusion model. Clinical Pharmacology & Therapeutics. 1974;16(1):87–98. DOI: 10.1002/cpt1974161part187.

8. Liu F., Zhuang X., Yang C., Li Z., Xiong S., Zhang Z., Li J., Lu C., Zhang Z. Characterization of preclinical in vitro and in vivo ADME properties and prediction of human PK using a physiologically based pharmacokinetic model for YQA-14, a new dopamine D 3 receptor antagonist candidate for treatment of drug addiction. Biopharmaceutics & Drug Disposition. 2014;35(5):296–307. DOI: 10.1002/bdd.1897.

9. Mörk A.-K., Johanson G. Chemical-specific adjustment factors for intraspecies variability of acetone toxicokinetics using a probabilistic approach. Toxicological Sciences. 2010;116(2):336–348. DOI: 10.1093/toxsci/kfq116.

10. Chetty M., Johnson T. N., Polak S., Salem F., Doki K., Rostami-Hodjegan A. Physiologically based pharmacokinetic modelling to guide drug delivery in older people. Advanced Drug Delivery Reviews. 2018;135:85–96. DOI: 10.1016/j.addr.2018.08.013.

11. Small B. G., Hatley O., Jamei M., Gardner I., Johnson T. N. Incorporation and performance verification of hepatic portal blood flow shunting in minimal and full PBPK models of liver cirrhosis. Clinical Pharmacology & Therapeutics. 2023;114(6):1264–1273. DOI: 10.1002/cpt.3032.

12. Heimbach T., Chen Y., Chen J., Dixit V., Parrott N., Peters S. A., Poggesi I., Sharma P., Snoeys J., Shebley M., Tai G., Tse S., Upreti V. V., Wang Y. H., Tsai A., Xia B., Zheng M., Zhu A. Z. X., Hall S. Physiologically-Based Pharmacokinetic Modeling in Renal and Hepatic Impairment Populations: A Pharmaceutical Industry Perspective. Clinical Pharmacology & Therapeutics. 2021;110(2):297–310. DOI: 10.1002/cpt.2125.

13. Yang C.-G., Chen T., Si W.-T., Wang A.-H., Ren H.-C., Wang L. High-performance PBPK model for predicting CYP3A4 induction-mediated drug interactions: a refined and validated approach. Frontiers in Pharmacology. 2025;16:1521068. DOI: 10.3389/fphar.2025.1521068.

14. Lang J., Vincent L., Chenel M., Ogungbenro K., Galetin A. Reduced physiologically-based pharmacokinetic model of dabigatran etexilate-dabigatran and its application for prediction of intestinal P-gp-mediated drug-drug interactions. European Journal of Pharmaceutical Sciences. 2021;165:105932. DOI: 10.1016/j.ejps.2021.105932.

15. Zhuang X., Lu C. PBPK modeling and simulation in drug research and development. Acta Pharmaceutica Sinica B. 2016;6(5):430–440. DOI: 10.1016/j.apsb.2016.04.004.

16. Scotcher D., Melillo N., Tadimalla S., Darwich A. S., Ziemian S., Ogungbenro K., Schütz G., Sourbron S., Galetin A. Physiologically Based Pharmacokinetic Modeling of Transporter-Mediated Hepatic Disposition of Imaging Biomarker Gadoxetate in Rats. Molecular Pharmaceutics. 2021;18(8):2997–3009. DOI: 10.1021/acs.molpharmaceut.1c00206.

17. Mu R.-J., Liu T.-L., Liu X.-D., Liu L. PBPK-PD model for predicting morphine pharmacokinetics, CNS effects and naloxone antagonism in humans. Acta Pharmacologica Sinica. 2024;45(8):1752–1764. DOI: 10.1038/s41401-024-01255-2.

18. Bloomingdale P., Bumbaca-Yadav D., Sugam J., Grauer S., Smith B., Antonenko S., Judo M., Azadi G., Yee K. L. PBPK-PD modeling for the preclinical development and clinical translation of tau antibodies for Alzheimer’s disease. Frontiers in Pharmacology. 2022;13:867457. DOI: 10.3389/fphar.2022.867457.

19. Liu X., Wang W., Chen J., Chen D., Tao Y., Ouyang D. PBPK/PD modeling of nifedipine for precision medicine in pregnant women: enhancing clinical decision-making for optimal drug therapy. Pharmaceutical Research. 2024;41(1):63–75. DOI: 10.1007/s11095-023-03638-2.

20. Toshimoto K. Beyond the basics: A deep dive into parameter estimation for advanced PBPK and QSP models. Drug Metabolism and Pharmacokinetics. 2024;56:101011. DOI: 10.1016/j.dmpk.2024.101011.

21. Geerts H., Walker M., Rose R., Bergeler S., van der Graaf P. H., Schuck E., Koyama A., Yasuda S., Hussein Z., Reyderman L., Swanson C., Cabal A. A combined physiologically-based pharmacokinetic and quantitative systems pharmacology model for modeling amyloid aggregation in Alzheimer’s disease. CPT: Pharmacometrics & Systems Pharmacology. 2023;12(4):444–461. DOI: 10.1002/psp4.12912.

22. Jones H. M., Gardner I. B., Collard W. T., Stanley P. J., Oxley P., Hosea N. A., Plowchalk D., Gernhardt S., Lin J., Dickins M., Rahavendran S. R., Jones B. C., Watson K. J., Pertinez H., Kumar V., Cole S. Simulation of human intravenous and oral pharmacokinetics of 21 diverse compounds using physiologically based pharmacokinetic modelling. Clinical Pharmacokinetics. 2011;50(5):331–347. DOI: 10.2165/11539680-000000000-00000.

23. Jones H. M., Rowland‐Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT: Pharmacometrics & Systems Pharmacology. 2013;2(8):1–12. DOI: 10.1038/psp.2013.41.

24. Maza D. D.-A, Olukotun S. F., Akinlade G. O. A Human Physiologically-based Bio-kinetic Model for Cadmium. American Journal of Mathematical and Computer Modelling. 2021;6(1):9–13. DOI: 10.11648/j.ajmcm.20210601.12.

25. Jamei M., Turner D., Yang J., Neuhoff S., Polak S., Rostami-Hodjegan A., Tucker G. Population-based mechanistic prediction of oral drug absorption. The AAPS Journal. 2009;11(2):225–237. DOI: 10.1208/s12248-009-9099-y.

26. Willmann S., Schmitt W., Keldenich J., Lippert J., Dressman J. B. A physiological model for the estimation of the fraction dose absorbed in humans. Journal of Medicinal Chemistry. 2004;47(16):4022–4031. DOI: 10.1021/jm030999b.

27. Amidon G. L., Lennernäs H., Shah V. P., Crison J. R. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharmaceutical Research. 1995;12(3):413–420. DOI: 10.1023/a:1016212804288.

28. Lawrence X. Y., Lipka E., Crison J. R., Amidon G. L. Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption. Advanced Drug Delivery Reviews. 1996;19(3):359–376. DOI: 10.1016/0169-409x(96)00009-9.

29. Lawrence X. Y., Amidon G. L. A compartmental absorption and transit model for estimating oral drug absorption. International Journal of Pharmaceutics. 1999;186(2):119–125. DOI: 10.1016/s0378-5173(99)00147-7.

30. Noyes A. A., Whitney W. R. The rate of solution of solid substances in their own solutions. Journal of the American Chemical Society. 1897;19(12):930–934. DOI: 10.1021/ja02086a003.

31. Elmokadem A., Zhang Y., Knab T., Jordie E., Gillespie W. R. Bayesian PBPK modeling using r/stan/torsten and julia/ sciml/turing.jl. CPT: Pharmacometrics & Systems Pharmacology. 2023;12(3):300–310. DOI: 10.1002/psp4.12926.

32. Dadashova K., Smith R. C., Haider M. A., Reich B. J. Bayesian inference informed by parameter subset selection for a minimal PBPK brain model. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2025;383(2292):20240219. DOI: 10.1098/rsta.2024.0219.

33. Najjar A., Hamadeh A., Krause S., Schepky A., Edginton A. Global sensitivity analysis of Open Systems Pharmacology Suite physiologically based pharmacokinetic models. CPT: Pharmacometrics & Systems Pharmacology. 2024;13(12):2052–2067. DOI: 10.1002/psp4.13256.


Supplementary files

1. Графический абстракт
Subject
Type Other
View (2MB)    
Indexing metadata ▾

Review

For citations:


Bagaeva N.S., Evtyukhina E.I., Shchelgacheva D.S., Popova M.O., Archakova O.A., Komarov T.N., Marchenko A.N., Malashenko E.A., Shohin I.E. Physiologically-based pharmacokinetic modeling: past, present and future (review). Drug development & registration. (In Russ.) https://doi.org/10.33380/2305-2066-2025-14-4-2183

Views: 43


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)