Implementation of the good research practice principles using the example of the university quality management system
https://doi.org/10.33380/2305-2066-2025-14-4-2166
Abstract
Introduction. The quality assurance of research work is a key factor in scientific discoveries, as well as the emergence of innovative high-margin products on the market. Due to the specific nature of the scientific research field, there are currently no uniform rules for organizing and conducting research that meet the needs of both scientific groups and businesses interested in the commercialization of developments, including drug developments, and individual approaches are only being formed. The set of established approaches and concepts, according to the existing system of good practices (GxP), is called "Good Research Practice" or GRP.
Аim. Generalization of existing global trends in the field of Good Research Practice and description of the implementation of GRP principles using the example of the quality management system of the Sirius University Laboratory Facility.
Materials and methods. The methods of GRP principles implementation in the Laboratory Complex are based on the requirements of ISO 9001 and ICH recommendations in such areas as document and record management, personnel and training management, audit and inspection management, risk management, analysis and evaluation of performance and efficiency.
Results and discussion. The current principles of GRP, formed within the framework of national scientific communities, individual universities and state programs, are analyzed. Using the example of the Laboratory Facility of the Sirius University, the possibilities and examples of complex implementation of GRP in such areas of the quality management system as document and record management, personnel and training management, audit and inspection management, risk management, conducting periodic analysis and assessment of the effectiveness and efficiency of activities are considered.
Conclusion. The approach to conducting scientific research work described in the article, based on the integrated implementation of GRP, is a tool for ensuring the quality of research, necessary both for purely scientific activities and for successful scientific and applied interaction between the academic environment and pharmaceutical companies in order to accelerate the launch of new drugs to the market and meet patient demand.
About the Authors
I. S. GibaRussian Federation
1, Olimpiyskiy prospect, 354340, federal territory "Sirius", Krasnodar region, 354340
A. Е. Pronskikh
Russian Federation
1, Olimpiyskiy prospect, 354340, federal territory "Sirius", Krasnodar region, 354340
M. V. Mintel
Russian Federation
1, Olimpiyskiy prospect, 354340, federal territory "Sirius", Krasnodar region, 354340
A. A. Chuvashov
Russian Federation
1, Olimpiyskiy prospect, 354340, federal territory "Sirius", Krasnodar region, 354340
References
1. Lexchin J., Bero L. A., Djulbegovic B., Clark O. Pharmaceutical industry sponsorship and research outcome and quality: systematic review. BMJ. 2003;326(7400):1167–1170. DOI: 10.1136/bmj.326.7400.1167.
2. Gersdorf T., He V. F., Schlesinger A., Koch G., Ehrismann D., Widmer H., von Krogh G. Demystifying industry-academia collaboration. Nature Reviews Drug Discovery. 2019;18(10):743–744. DOI: 10.1038/d41573-019-00001-2.
3. Titball R. W., Bernstein D. I., Fanget N. V. J., Hall R. A., Longet S., MacAry P. A., Rupp R. E., van Gils M., von Messling V., Walker D. H., Barrett A. D. T. Progress with COVID vaccine development and implementation. npj Vaccines. 2024;9:69. DOI: 10.1038/s41541-024-00867-3.
4. Lee P., Kim C.-U., Seo S. H., Kim D.-J. Current status of COVID-19 vaccine development: focusing on antigen design and clinical trials on later stages. Immune Network. 2021;21(1):e4. DOI: 10.4110/in.2021.21.e4.
5. Imran M., Arora M. K., Asdaq S. M. B., Khan S. A., Alaqel S. I., Alshammari M. K., Alshehri M. M., Alshrari A. S., Ali A. M., Al-shammeri A. M., Alhazmi B. D., Harshan A. A., Alam M. T., Abida A. Discovery, development, and patent trends on molnupiravir: a prospective oral treatment for COVID-19. Molecules. 2021;26(19):5795. DOI: 10.3390/molecules26195795.
6. Ma Z., Augustijn K., de Esch I. J. P., Bossink B. Collaborative university–industry R&D practices supporting the pharmaceutical innovation process: Insights from a bibliometric review. Drug Discovery Today. 2022;27(8):2333–2341. DOI: 10.1016/j.drudis.2022.05.001.
7. Ferrins L., Pollastri M. P. The importance of collaboration between industry, academics, and nonprofits in tropical disease drug discovery. ACS Infectious Diseases. 2018;4(4):445–448. DOI: 10.1021/acsinfecdis.7b00208.
8. Melnychuk T., Schultz C., Wirsich A. The effects of university–industry collaboration in preclinical research on pharmaceutical firms’ R&D performance: Absorptive capacity’s role. Journal of Product Innovation Management. 2021;38:355–378. DOI: 10.1111/jpim.12572.
9. Abramo G., D’Angelo C. A., Di Costa F., Solazzi M. The role of information asymmetry in the market for university-industry research collaboration. The Journal of Technology Transfer. 2011;36(1):84–100. DOI: 10.1007/s10961-009-9131-5.
10. O’Dwyer M., Filieri R., O’Malley L. Establishing successful university–industry collaborations: barriers and enablers deconstructed. The Journal of Technology Transfer. 2023;48:900–931. DOI: 10.1007/s10961-022-09932-2.
11. Rosenblatt M. How academia and the pharmaceutical industry can work together: the president’s lecture, annual meeting of the American Thoracic Society, San Francisco, California. Annals of the American Thoracic Society. 2013;10(1):31–38. DOI: 10.1513/AnnalsATS.201209-075PS.
12. Scherer F. M. Research and development costs and productivity in biopharmaceuticals. In: Anthony J. Culyer, editor. Encyclopedia of Health Economics. Amsterdam: Elsevier; 2014. P. 249–255. DOI: 10.1016/B978-0-12-375678-7.01203-7.
13. Shabrova N. V., Ambarova P. A. Publication activity of Russian university students. The Education and science journal. 2023;25(9):171–196. (In Russ.) DOI: 10.17853/1994-5639-2023-9-171-196.
14. Polikhina N. A. Publication activity of academic staff in Russia: results, trends, problems. Science Governance and Scientometrics. 2020;15(2):196–222. (In Russ.) DOI: 10.33873/2686-6706.2020.15-2.196-222.
15. Khrustalev M. B., Turbina N. Yu., Maksimova A. A. Russian medical universities in international rankings: comparison of scientometric criteria. The Scientific Notes of the Pavlov University. 2018;25(3):25–34. (In Russ.) DOI: 10.24884/1607-4181-2018-25-3-25-34.
16. Guskov A., Kosyakov D., Selivanova I. Strategies to improve publication activities of the universities participating in Project 5-100. Scientific and Technical Libraries. 2017;(12):5–18 (In Russ.) DOI: 10.33186/1027-3689-2017-12-5-18.
17. Khaladov Kh.-A. S., Golovina I. V., Paputkova G. A. Publication activity of pedagogical universities: quantitative and qualitative indicators. Higher Education in Russia. 2022;31(2):58–67. (In Russ.) DOI: 10.31992/0869-3617-2022-31-2-58-67.
18. Shah F. A., Jawaid S. A. The h-index: An indicator of research and publication output. Pakistan Journal of Medical Sciences. 2023;39(2):315–316. DOI: 10.12669/pjms.39.2.7398.
19. Akhtar M. K. The h-index is an unreliable research metric for evaluating the publication impact of experimental scientists. Frontiers in Research Metrics and Analytics. 2024;9:1385080. DOI: 10.3389/frma.2024.1385080.
20. Ofer D., Kaufman H., Linial M. What’s next? Forecasting scientific research trends. Heliyon. 2024;10(1):e23781. DOI: 10.1016/j.heliyon.2023.e23781.
21. Rantanen J., Khinast J. The future of pharmaceutical manufacturing sciences. Journal of Pharmaceutical Sciences. 2015;104(11):3612–3638. DOI: 10.1002/jps.24594.
22. McMurray C. A scientific fraud. An investigation. A lab in recovery. The Transmitter. 2024. DOI: 10.53053/USNX9479.
23. Khajuria A., Agha R. Fraud in scientific research – birth of the Concordat to uphold research integrity in the United Kingdom. Journal of the Royal Society of Medicine. 2014;107(2):61–65. DOI: 10.1177/0141076813511452.
24. Wittau J., Seifert R. How to fight fake papers: a review on important information sources and steps towards solution of the problem. Naunyn-Schmiedeberg’s Archives of Pharmacology. 2024;397:9281–9294. DOI: 10.1007/s00210-024-03272-8.
25. Frederickson R. M., Herzog R. W. Addressing the big business of fake science. Molecular Therapy. 2022;30(7):2390. DOI: 10.1016/j.ymthe.2022.06.001.
26. Montgomery Collins E., Bassat Q. The scientific integrity of journal publications in the age of "Fake News". Journal of Tropical Pediatrics. 2018;64(5):360–363. DOI: 10.1093/tropej/fmy039.
27. Parker L., Boughton S., Lawrence R., Bero L. Experts identified warning signs of fraudulent research: a qualitative study to inform a screening tool. Journal of Clinical Epidemiology. 2022;151:1–17. DOI: 10.1016/j.jclinepi.2022.07.006.
28. Sabel B. A., Knaack E., Gigerenzer G., Bilc M. Fake publications in biomedical science: red-flagging method indicates mass production. medRxiv. 2023. DOI: 10.1101/2023.05.06.23289563.
29. Bespalov A., Bernard R., Gilis A., Gerlach B., Guillén J., Castagné V., Lefevre I. A., Ducrey F., Monk L., Bongiovanni S., Altevogt B., Arroyo-Araujo M., Bikovski L., de Bruin N., Castaños-Vélez E., Dityatev A., Emmerich C. H., Fares R., Ferland-Beckham C., Froger-Colléaux C., Gailus-Durner V., Hölter S. M., Hofmann M. C. J., Kabitzke P., Kas M. J. H., Kurreck C., Moser P., Pietraszek M., Popik P., Potschka H., Montes de Oca E. P., Restivo L., Riedel G., Ritskes-Hoitinga M., Samardzic J., Schunn M., Stöger C., Voikar V., Vollert J., Wever K. E., Wuyts K., MacLeod M. R., Dirnagl U., Steckler T. Introduction to the EQIPD quality system. eLife. 2021;10:e63294. DOI: 10.7554/eLife.63294.
30. Bespalov A., Michel M. C., Steckler T., editors. Good research practice in non-clinical pharmacology and biomedicine. Cham: SpringerOpen; 2020. 423 p. DOI: 10.1007/978-3-030-33656-1.
31. Colavizza G., Hrynaszkiewicz I., Staden I., Whitaker K., McGillivray B. The citation advantage of linking publications to research data. PLoS ONE. 2020;15(4):e0230416. DOI: 10.1371/journal.pone.0230416.
32. Schwab S., Janiaud P., Dayan M., Amrhein V., Panczak R., Palagi P. M., Hemkens L. G., Ramon M., Rothen N., Senn S., Furrer E., Held L. Ten simple rules for good research practice. PLoS Computational Biology. 2022;18(6):e1010139. DOI: 10.1371/journal.pcbi.1010139.
33. Kavasidis I., Lallas E., Leligkou H. C., Oikonomidis G., Karydas D., Gerogiannis V. C., Karageorgos A. Deep transformers for computing and predicting ALCOA+ data integrity compliance in the pharmaceutical industry. Applied Sciences. 2023;13(13):7616. DOI: 10.3390/app13137616.
34. Gokulakrishnan D., Venkataraman S. Ensuring data integrity: best practices and strategies in pharmaceutical industry. Intelligent Pharmacy. 2025:3(4):296–303. DOI: 10.1016/j.ipha.2024.09.010.
35. Mollah A. H., Long M., Baseman H. S., editors. Risk management applications in pharmaceutical and biopharmaceutical manufacturing. Hoboken: John Wiley & Sons, Inc.; 2013. 432 p. DOI: 10.1002/9781118514399.
36. Sandle T. Risk management and risk assessment for pharmaceutical manufacturing: a contamination control perspective. London: CreateSpace; 2013. 168 p.
Supplementary files
|
|
1. Графический абстракт | |
| Subject | ||
| Type | Other | |
View
(1MB)
|
Indexing metadata ▾ | |
Review
For citations:
Giba I.S., Pronskikh A.Е., Mintel M.V., Chuvashov A.A. Implementation of the good research practice principles using the example of the university quality management system. Drug development & registration. (In Russ.) https://doi.org/10.33380/2305-2066-2025-14-4-2166


































