Разработка и регистрация лекарственных средств

Расширенный поиск


Полный текст:


В обзоре литературы представлены сведения о полимерах, применяемых для эмболизации кровеносных сосудов. Рассмотрены существующие и перспективные средства для эмболизации сосудов. Особое внимание уделено полимерам и композициям на их основе, способным образовывать гели при введении в кровеносное русло.

Об авторах

С. А. Кедик
Московский технологический университет (ИТХТ)

В. В. Суслов
Московский технологический университет (ИТХТ)

А. П. Малкова
АНО «Институт медико-биологических исследований и технологий» («ИМБИИТ»)

Е. А. Шняк
ЗАО «Институт фармацевтических технологий»

Ю. М. Домнина
ЗАО «Институт фармацевтических технологий»

Список литературы

1. J. Zheng et al. Transcatheter arterial chemoembolization combined with radiofrequency ablation can improve survival of patients with hepatocellular carcinoma with portal vein tumour thrombosis: extending the indication for ablation // Clinical radiology. 2014. Т. 69. № 6. Р. 253-263.

2. J. Hoshino et al. Intravascular embolization therapy in patients with enlarged polycystic liver // American Journal of Kidney Diseases. 2014. Т. 63. №. 6. Р. 937-944.

3. J. Enriquez et al. Gastroduodenal artery recanalization after transcatheter fibered coil embolization for prevention of hepaticoenteric flow: incidence and predisposing technical factors in 142 patients // Acta Radiologica. 2013. Т. 54. № 7. Р. 790-794.

4. A. Poursaid et al. Polymeric materials for embolic and chemoembolic applications // Journal of Controlled Release. 2016. Т. 240. Р. 414-433.

5. М. Biondi et al. Investigation of the mechanisms governing doxorubicin and irinotecan release from drug-eluting beads: mathematical modeling and experimental verification // Journal of Materials Science: Materials in Medicine. 2013. Т. 24. № 10. Р. 2359-2370.

6. S. Vaidya, K.R. Tozer, J. Chen. An overview of embolic agents // Seminars in interventional radiology. 2008. Т. 25. № 03. Р. 204-215.

7. Патент США 9708416. Microspheres of hydrolysed starch with endogenous, charged ligands / М. Malmsjo et al. - 2017.

8. R.E. Kania et al. Early postoperative CT scanning for juvenile nasopharyngeal angiofibroma: detection of residual disease // American journal of neuroradiology. 2005. Т. 26. № 1. Р. 82-88.

9. M.K. Kolber et al. Ethylene vinyl alcohol copolymer (onyx) embolization for acute hemorrhage: a systematic review of peripheral applications // Journal of Vascular and Interventional Radiology. 2015. Т. 26. № 6. Р. 809-815.

10. А. Laurent et al. Trisacryl gelatin microspheres for therapeutic embolization, I: development and in vitro evaluation // American journal of neuroradiology. 1996. Т. 17. № 3. Р. 533-540.

11. A.L. Lewis. Embolisation devices from biomedical polymers for intra-arterial occlusion and drug delivery in the treatment of cancer // Biomaterials for Cancer Therapeutics: Diagnosis, Prevention and Therapy. 2013. Р. 207.

12. S. Stampfl et al. Arterial distribution characteristics of Embozene particles and comparison with other spherical embolic agents in the porcine acute embolization model // Journal of Vascular and Interventional Radiology. 2009. Т. 20. №.12. Р. 1597-1607.

13. B. Guiu et al. Idarubicin-loaded ONCO- ZENE drug-eluting embolic agents for chemoembolization of hepatocellular carcinoma: in vitro loading and release and in vivo pharmacokinetics // Journal of Vascular and Interventional Radiology. 2015. Т. 26. № 2. Р. 262-270.

14. C.D. Gadaleta, G. Ranieri. Trans-arterial chemoembolization as a therapy for liver tumours: New clinical developments and suggestions for combination with angiogenesis inhibitors // Critical reviews in oncology/hematology. 2011. Т. 80. № 1. Р. 40-53.

15. N. Koçer et al. Preliminary experience with precipitating hydrophobic injectable liquid in brain arteriovenous malformations // Diagnostic and Interventional Radiology. 2016. Т. 22. № 2. Р. 184.

16. M.F. Brothers et al. n-Butyl 2-cyanoacry-late-substitute for IBCA in interventional neuroradiology: histopathologic and polymerization time studies // American Journal of Neuroradiology. 1989. Т. 10. № 4. Р. 777-786.

17. H.V. Vinters et al. The histotoxicity of cyanoacrylates // Neuroradiology. 1985. Т. 27. № 4. Р. 279-291.

18. C.M. Riley et al. Gelling process differences in reverse emulsion, in situ gelling polymeric materials for intracranial aneurysm embolization, formulated with injectable contrast agents // Journal of Biomedical Materials Research. Part B: Applied Biomaterials. 2011. Т. 96. № 1. Р. 47-56.

19. V. Cheng et al. Poly (N-isopropylacryla-mide-co-poly (ethylene glycol))-acrylate simultaneously physically and chemically gelling polymer systems // Journal of Applied Polymer Science. 2007. Т. 106. № 2. Р. 1201-1207.

20. Патент США 8048407. In situ gelling self-reactive materials for embolization / B. Vernon, M. Birdno, M.C. Preul. - 2011.

21. B. Vernon, A. Martinez. Gel strength and solution viscosity of temperaturesensitive, in-situ-gelling polymers for endovascular embolization // Journal of Biomaterials Science, Polymer Edition. 2005. Т. 16. № 9. Р. 1153-1166.

22. C.R. Brennecka et al. In vivo experimental aneurysm embolization in a swine model with a liquid-to-solid gelling polymer system: initial biocompati- bility and delivery strategy analysis // World neurosurgery. 2012. Т. 78. № 5. Р. 469-480.

23. C.R. Brennecka, M.C. Preul, B.L. Vernon. In vitro delivery, cytotoxicity, swelling, and degradation behavior of a liquid-tosolid gelling polymer system for cerebral aneurysm embolization // Journal of Biomedical Materials Research. Part B: Applied Biomaterials. 2012. Т. 100. № 5. Р. 1298-1309.

24. B. Jeong, S.W. Kim, Y.H. Bae. Thermosensitive sol-gel reversible hydrogels // Advanced drug delivery reviews. 2012. Т. 64. Р. 154-162.

25. H.H. Bearat et al. Synthesis, characterization and properties of a physically and chemically gelling polymer system using poly (NIPAAm-co-HEMA-acrylate) and poly (NIPAAm-co-cysteamine) // Journal of Biomaterials Science, Polymer Edition. 2011. Т. 22. № 10. Р. 1299-1318.

26. H.H. Bearat, M.C. Preul, B. L. Vernon. Cytotoxicity, in vitro models and preliminary in vivo study of dual physical and chemical gels for endovascular embolization of cerebral aneurysms // Journal of Biomedical Materials Research. Part A. 2013. Т. 101. № 9. Р. 2515-2525.

27. L. Weng et al. An in situ forming biodegradable hydrogel-based embolic agent for interventional therapies // Acta biomaterialia. 2013. Т. 9. № 9. Р. 8182-8191.

28. L. Bédouet et al. Anti-angiogenic drug delivery from hydrophilic resorbable embolization microspheres: an in vitro study with sunitinib and bevacizumab // International journal of pharmaceutics. 2015. Т. 484. № 1. Р. 218-227.

29. O. Jordan, E. Doelker, D.A. Rüfenacht. Biomaterials used in injectable implants (liquid embolics) for percutaneous filling of vascular spaces // Cardiovascular and interventional radiology. 2005. Т. 28. №. 5. Р. 561-569.

30. S. Vaidya, K.R. Tozer, J. Chen. An overview of embolic agents // Seminars in interventional radiology. 2008. Т. 25. № 3. Р. 204-215.

31. B.P. Barnett et al. In vitro assessment of EmboGel and UltraGel radiopaque hydrogels for the endovascular treatment of aneurysms // Journal of Vascular and Interventional Radiology. 2009. Т. 20. № 4. Р. 507-512.

32. T.A. Becker, D.R. Kipke, T. Brandon. Calcium alginate gel: a biocompatible and mechanically stable polymer for endovascular embolization // Journal of Biomedical Materials Research Part A. 2001. Т. 54. № 1. Р. 76-86.

33. T.A. Becker, D. R. Kipke. Flow properties of liquid calcium alginate polymer injected through medical microcatheters for endovascular embolization // Journal of Biomedical Materials Research. Part A. 2002. Т. 61. № 4. Р. 533-540.

34. B.P. Barnett, P. Gailloud. Assessment of embogel - A selectively dissolvable radiopaque hydrogel for embolic applications // Journal of Vascular and Interventional Radiology. 2011. Т. 22. № 2. Р. 203-211.

35. J. Raymond et al. Alginate for endovascular treatment of aneurysms and local growth factor delivery // American journal of neuroradiology. 2003. Т. 24. № 6. Р. 1214-1221.

36. H. Pan et al. Embolization of a common carotid aneurysm with rhVEGF coupled to a pH-responsive chitosan in a rat model // Journal of neurosurgery. 2010. Т. 112. № 3. Р. 658-665.

37. M. Okamura et al. Synthesis and properties of radiopaque polymer hydrogels: polyion complexes of copolymers of acrylamide derivatives having triiodophenyl and carboxyl groups and p-styrene sulfonate and polyallylamine // Journal of Molecular Structure. 2000. Т. 554. № 1. Р. 35-45.

38. М. Okamura et al. Synthesis and properties of radiopaque polymer hydrogels II: copolymers of 2,4,6-triiodophenyl or N-(3-carboxy-2,4,6- triiodophenyl)-acrylamide and p-styrene sulfonate // Journal of molecular structure. 2002. Т. 602. Р. 17-28.

39. K. Saralidze et al. Injectable polymeric microspheres with X-ray visibility. Preparation, properties, and potential utility as new traceable bulking agents // Biomacromolecules. 2003. Т. 4. № 3. Р. 793-798.

Для цитирования:

Кедик С.А., Суслов В.В., Малкова А.П., Шняк Е.А., Домнина Ю.М. ГЕЛЕОБРАЗУЮЩИЕ ПОЛИМЕРЫ ДЛЯ СОЗДАНИЯ ЖИДКИХ ЭМБОЛИЗАТОВ. Разработка и регистрация лекарственных средств. 2017;(4):56-63.

For citation:

Kedik S.A., Suslov V.V., Malkova A.P., Shnyak E.A., Domnina Y.M. GEL-FORMING POLYMERS FOR EMBOLIZATION. Drug development & registration. 2017;(4):56-63. (In Russ.)

Просмотров: 49

Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)