Preview

Drug development & registration

Advanced search

DETECTION OF TOXICANTS BASED ON LUMINESCENT REAGENTS

Abstract

Application of luminescent reagents for detection of toxicants including warfare agents, pesticides and their degradation products and precursors has been systematically reviewed. Methods of organophosphorus toxicants and products of their destruction (OP) detection based on lanthanide luminescent complexes (primarily Eu3+) have the similar sensitivity as the most advanced instrumental chromatographic and biochemical assays with detection level in the range of several ppts that allows to determine supertoxicants at the safety requirements concentration levels and at appropriate analysis duration from a few seconds to 10 minutes. High selectivity of toxicants identification is achieved by means of imprinted materials, modified cyclodextrins and luminescent sensor arrays. This is the basis for development of new technologies for trace analysis of toxicants and their decomposition products, including possible technology of luminescent contrast agents’ application to increase sensitivity of spectroscopic methods and remote determination of toxicants on the ground. Further possibilities to develop next generation materials for protective gear, equipment and multifunctional contact surfaces providing visualization and identification of toxicants and simultaneous catalytic self-decontamination is discussed. Relationship between technologies for improving safety and security at the crossroads of analytical chemistry of warfare agents, criminalistics, chemical safety and pharmaceutics has been demonstrated.

About the Authors

A. V. Sosnov
Federal State Unitary Enterprise «State Pharmaceutical Plant» (FSUE «GosZMP»)
Russian Federation


M. I. Vlasov
Federal State Unitary Enterprise «State Pharmaceutical Plant» (FSUE «GosZMP»)
Russian Federation


S. V. Sadovnikov
Federal State Unitary Enterprise «State Pharmaceutical Plant» (FSUE «GosZMP»)
Russian Federation


K. A. Rufanov
Federal State Unitary Enterprise «State Pharmaceutical Plant» (FSUE «GosZMP»)
Russian Federation


F. M. Semchenko
Federal State Unitary Enterprise «State Pharmaceutical Plant» (FSUE «GosZMP»)
Russian Federation


A. A. Sosnova
Federal State Unitary Enterprise «State Pharmaceutical Plant» (FSUE «GosZMP»)
Russian Federation


A. S. Radilov
Research Institute of Hygiene, Occupational Pathology and Human Ecology, Federal Medical-Biological Agency of Russia
Russian Federation


E. I. Savelieva
Research Institute of Hygiene, Occupational Pathology and Human Ecology, Federal Medical-Biological Agency of Russia
Russian Federation


References

1. Конвенция о запрещении разработки, производства, накопления и применения химического оружия и его уничтожении. Официальный документ ООН и OPCW. Редакция от 29.07.2005. URL: https://www.opcw.org/fileadmin/OPCW/CWC/CWC_ru.pdf (дата обращения 04.09.2017).

2. Timeline of Syrian Chemical Weapons Activity, 2012-2017. ACA 2017. URL:https://www.armscontrol.org/factsheets/Timeline-of-Syrian-Chemical-Weapons-Activity (дата обращения 04.09.2017).

3. E. Dearing, C. Flood. Sampling and analysis relevant to the implementation of the chemical weapons convention. 2015. OPCW Laboratory. - Rijswijk, The Netherlands: OPCW Laboratory. 2015. URL: https://www.opcw.org/fileadmin/OPCW/Science_Technology/Sampling_and_Analysis_-_LAB.pdf (дата обращения 04.09.2017).

4. N. Grigoriu, G. Epure, R. Ginghina, D. Mosteanu. An overview of the opcw’s programme for biomedical samples analysis // International conference knowledge-based organization. Conference proceedings. 2015. V. XXI, № 3. URL:https://www.degruyter.com/downloadpdf/j/kbo.2015.21.issue -3/kbo-2015-0138/kbo-2015-0138.pdf (дата обращения 04.09.2017).

5. OPCW AT 20. 20th anniversary of the entry into force of the Chemical Weapons Convention. URL: https://20years.opcw.org/ (дата обращения 09.06.2017).

6. A.T. Tu. Overview of Sarin Terrorist Attacks in Japan // ACS Symposium Series. 1999. V. 745. P. 304-317.

7. Chemical terrorism: horrors in Tokyo subway and Matsumoto City / Ed. by A.T. Tu. - Fort Collins: Alaken, 2002. 240 p.

8. OPCW Fact-Finding Mission Reports. Syria and the OPCW. OPCW. URL: https://www.opcw.org/special-sections/syria/fact-finding-mission-reports/ (дата обращения 04.09.2017).

9. OPCW Director-General Shares Incontrovertible Laboratory Results Concluding Exposure to Sarin. OPCW. 19.04.2017. URL: https://www.opcw.org/news/article/opcw-director-general-shares-incontrovertible-laboratory-results-concluding-exposure-to-sarin/ (дата обращения 04.09.2017).

10. A.T. Tu. Toxicological and chemical aspects of sarin terrorism in japan in 1994 and 1995 // Toxin Reviews. 2007. V. 26. P. 231-274.

11. R.K. Mishra, L.J. Hubble, A. Martín et. al. Wearable Flexible and Stretchable Glove Biosensor for On-Site Detection of Organophosphorus Chemical Threats // ACS Sens. 2017. V. 2(4). P. 553-561.

12. Handbook of toxicology of chemical warfare agents. 2nd ed. by R.C. Gupta. - Elsevier. 2015. 1184 p.

13. J. Bajgar. Laboratory Diagnosis of Organophosphates/Nerve Agent Poisoning // Klin. Biochem. Metab. 2005. V. 13 (34). № 1. P. 40-47.

14. Chemical Warfare Agents. Chemistry, Pharmacology, Toxicology, and Therapeutics / Ed. by J.A. Romano, Jr. - NY: CRC Press. Taylor & Francis Group, 2008. 723 p.

15. Y.J. Jang, K. Kim, O.G. Tsay, D.A. Atwood, D.G. Churchill. Destruction and Detection of Chemical Warfare Agents // Chem. Rev. 2015. V. 115(24). P. 1-76.

16. E. Halámek, Z. Kobliha. Potenciální bojové chemické látky // Chem. Listy. 2011. V. 105. P. 323-333.

17. M.D. Crenshaw. Methylphosphonofluoridic Acid A Thermal Degradation Product Of Some Nerve Agents. Report. 2002. Battelle Memorial Institute Columbus. Ohio. URL: www.dtic.mil/gettr-doc/pdf?AD=ADA436023 (дата обращения 04.09.2017).

18. T.E. McKone, B.M. Huey, E. Downing, L.M. Duffy. Editors Strategies to Protect the Health of Deployed U.S. Forces. Detecting, Characterizing, and Documenting Exposures. - Washington, D.C.: National academy press, 2000. 272 p.

19. Sarin // Wikipedia. URL: https://en.wikipedia.org/wiki/Sarin (дата обращения 04.09.2017).

20. Sarin. NIOSH emergency response card. URL: http://cs.erplan.net/WMD/ChemFiles/Links/ChemicalAgents/Niosh/SarinNiosh.htm (дата обращения 04.09.2017).

21. Note by the technical secretariat. Status update of the opcw fact-finding mission in Syria regarding a reported incident in Khan Shaykhun, 4 April 2017. OPCW Technical Secretariat. S/1497/2017. 12.04.2017.

22. Note by the technical secretariat report of the OPCW Fact-finding mission in Syria regarding an alleged incident in Khan Shaykhun, Syrian Arab Republic. April 2017. OPCW Technical Secretariat. S/1510/2017. 29.06.2017.

23. R.W. Baier, S.W. Weller. Catalytic and Thermal Decomposition of Isopropyl Methyl Fluorophosphonate // I&EC. Proc. Des. Develop. 1967. V. 6. P. 380-385.

24. L.L. Swaim, R.C. Johnson, Y. Zhou, C. Sandlin, J.R. Barr. Quantification of Organophosphorus Nerve Agent Metabolites Using a Reduced-Volume, High-Throughput Sample Processing Format and Liquid Chromatography- Tandem Mass Spectrometry // Journal of Analytical Toxicology. 2008. V. 32(9). P. 774-777.

25. E.I. Hamelin, N.D. Schulze, R.L. Shaner, R.M. Coleman, R.J. Lawrence, B.S. Crow, E.M. Jakubowski, R.C. Johnson. Quantitation of five organophosphorus nerve agent metabolites in serum using hydrophilic interaction liquid chromatography and tandem mass spectrometry // Anal Bioanal Chem. 2014. V. 406(21). P. 5195-5202.

26. T. Postol. Khan Sheikhoun, Syria: The Nerve Agent Attack that Did Not Occur. Analysis of the Times and Locations of Critical Events in the Alleged Nerve Agent Attack at 7 AM on April 4, 2017 in Khan Sheikhoun, Syria. Global Research. 19.04.2017. URL: http://www.globalresearch.ca/khan-sheikhoun-syria-the-nerve-agent-attack-that-did-not-occur/5585818; http://www. ibtimes.co.uk /mit-expert-claims-latest-chemical.-weapons-attack-syria-was-staged-1617267 (дата обращения 04.09.2017).

27. H.J. O’Neill, K.L. Brubaker, J.F. Schneider, L.F. Sytsma, T.A. Kimmell. Development of an analytical methodology for sarin (GB) and soman (GD) in various militaryrelated wastes // J Chromatogr A. 2002. V. 12(962(1-2)). P. 183-95.

28. M. Hamel, J. Hamoniaux, L. Rocha, S. Normand. Ppb detection of Sarin surrogate in liquid solutions // Proc. of SPIE. 2013.V. 8710. USACHPPM Technical Guide 230: Chemical Exposure Guidelines for Deployed Military Personnel. 2006. URL: http://chppm (дата обращения 04.09.2017).

29. R.A. Potyrailo, C. Surman, N. Nagraj et. al. Materials and Transducers Toward Selective Wireless Gas. Sensing // Chem. Rev. 2011. V. 111. P. 7315-7354.

30. Н.Г. Британов. Гигиенические аспекты перепрофилирования или ликвидации объектов по хранению и уничтожению химического оружия: дисс.. д.м.н. - Волгоград. 2014. URL: http://www.volgmed.ru/uploads/dsovet/thesis/6-605-britanov_nikolaj_grigorevich.pdf (дата обращения 04.09.2017).

31. P. Khan, D. Idrees, M.A. Moxley. Luminol-Based Chemiluminescent Signals: Clinical and Non-clinical Application and Future Uses // Biochem Biotechnol. 2014. V. 173(2). P. 333-355.

32. Y.S. Suh, M. Kamruzzaman, А.-М. Alam. Chemiluminescence determination of moxifloxacin in pharmaceutical and biological samples based on its enhancing effect of the luminol-ferricyanide system using a microfluidic chip // Luminescence. 2014. V. 29(3). P. 248-253.

33. M.J. Corey. Coupled Bioluminescent Assays: Methods, Evaluations, and Applications. - NY: John Wiley & Sons, 2008. 308 p.

34. S. Ripp, P. Jegier, C. Johnson, S. Moser, S. Islam, G. Sayler. Bioluminescent bioreporter assays for targeted detection of chemical and biological agents // Proc. of SPIE. 2008. V. 6945. URL: https://www.researchgate.net/profile/Steven_Ripp/publication/252199541_Bioluminescent_bioreporter_assays_for_targeted_detection_of_chemical_and_biological_agents/links/00b4953722abfcd2fb000000/Bioluminescent-bioreporter-assays-for-targeted-detection-of-chemical-and-biological-agents.pdf?origin=publication_detail (дата обращения 04.09.2017).

35. S.L. Fox, K.A. Daum, C.J. Miller, M.M. Cortez. Emergency First Responders’ Experience With Colorimetric Detection Methods. Report. U.S. Department of Homeland Security. 2007. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.517.2914&rep=rep1&type=pdf (дата обращения 04.09.2017).

36. M.J. Kangas, R.M. Burksb, J. Atwatera, R.M. Lukowicza, P. Williamsc, A.E. Holmes. Colorimetric Sensor Arrays for the Detection and Identification of Chemical Weapons and Explosives // Critical reviews in analytical chemistry. 2017. V. 47. № 2. P. 138-153.

37. P. Emanuel. Biological & Chemical Sensors for Emerging Applications. Opening keynote presentation. Biological & Chemical Sensors for Emerging Applications. December 6-7, 2016.

38. А.В. Соснов, Б.С. Пункевич, С.В. Садовников, Ф.М. Семченко. Разработка и выпуск стандартных образцов контролируемых биологически активных веществ ограниченного использования // Доклад на II-й Международной научной конференции «Стандартные образцы в измерениях и технологиях». Екатеринбург, 2015. URL: https://www.researchgate.net/publication/315457651_Development_and_production_of_reference_standards_of_controlled_high-potent_biologically_active_substances (дата обращения 04.09.2017).

39. Pocket-sized micro spectrometer URL: https://www.consumerphysics.com/business/technology/ (дата обращения 04.09.2017).

40. S.-W. Zhang, T. Swager. Fluorescent Detection of Chemical Warfare Agents: Functional Group Specific Ratiometric Chemosensors // J. Am. Chem. Soc. 2003. V. 125. P. 3420-3421.

41. Tae-Il, K. Shubhra, B. Maity, J. Bouffard, Y. Kim. Molecular Rotors for the Detection of Chemical Warfare Agent Simulants // Anal. Chem. 2016. V. 88(18). P. 9259-9263.

42. J.R. Schwierking, L.W. Menzel, E.R. Menzel. Organophosphate Nerve Agent Detection with Europium Complexes // The Scientific World Journal. 2004. V. 4. P. 948-955.

43. J.C. Bunzli, C. Piguet. Lanthanide-containing molecular and supramolecular polymetallic functional assemblies // Chem. Rev. 2002. V. 102 (6). P. 1897-1928.

44. G.H. Dennison, M.R. Sambrook, M.R. Johnston. VX and VG chemical warfare agents bidentate complexation with lanthanide ions // Chem. Commun. 2014. V. 50. P. 195-197.

45. J. Como. A Europium Complex Doped Silica Sol-Gel Thin Film for Detection of Trace Organophosphate Vapor: PhD Dissertation. - Texas: Tech University, 2010. URL: https://ttu-ir.tdl.org/ttu-ir/bitstream/handle/2346/ETD-TTU-2010-12-1123/COMO-DISSERTATION.pdf?sequence=1 (дата обращения 04.09.2017).

46. S. Quici, G. Marzanni, M. Cavazzini et al. Highly Luminescent Eu3+ and Tb3+ Macrocyclic Complexes Bearing an Appended Phenanthroline Chromophore // Inorganic Chemistry. 2002. V. 41(10). P. 2777-2784.

47. D. Knapton, M. Burnworth, S.J. Rowan, C. Weder, Fluorescent Organometallic Sensors for the Detection of Chemical- Warfare-Agent Mimics // Angew. Chem. Int. Ed. 2006. V. 45. P. 5825-5829.

48. M. Burnworth, S.J. Rowan, C. Weder. Fluorescent Sensors for the Detection of Chemical Warfare Agents // Chem. Eur. J. 2007. V. 13. P. 7828-7836.

49. E.R. Menzel, L.W. Menzel, J.R. Schwierking. Rapid fluorophosphate nerve agent detection with lanthanides // Talanta, 2005. V. 67. P. 383-387.

50. Patent WO 2006076430 A1. Nerve agent detection method and device / E.R. Menzel; Texas Tech University. 2005.

51. S. Zhao, L. Zhang, W. Li, L. Li. Preparation and Fluorescent Property of Eu(TTA)3Phen Incorporated in Polycarbonate Resin // Polymer Journal. 2006. V. 38(6). P. 523-526.

52. H.-X. Zhang, R.-B. Wei, C.-Z. Chen, X.-L. Tuo, X.-G. Wang. A novel fluorescent epoxy resin for organophosphate pesticide detection // Chinese Chemical Letters. 2015. V. 26. P. 39-42.

53. K. Kanagaraj, A. Affrose, S. Sivakolunthu, K. Pitchumani. Highly selective fluorescent sensing of fenitrothion using per-6-amino-beta-cyclodextrin:Eu(III) complex // Biosensors and Bioelectronics. 2012. V. 35. P. 452-455.

54. G.H. Dennison, M.R. Sambrook, M.R. Johnston. VX and VG chemical warfare agents bidentate complexation with lanthanide ions // Chem. Commun. 2014. V. 50. P. 195-197.

55. J.W. Boyd, G.P. Cobb, G.E. Southard, G.M. Murray. Development of Molecularly Imprinted Polymer Sensors for Chemical Warfare Agents // Johns Hopkins Apl. Technical Digest. 2004. V. 25(1). P. 44-49.

56. G.M. Murray. Molecularly imprinted polymer solution anion sensor. 2003. WO 2003034043 A2 The Johns Hopkins University.

57. A. Verma, G.M. Murray. A Path to Soluble Molecularly Imprinted Polymers // J. Funct. Biomater. 2012. V. 3. P. 1-22.

58. A.L. Jenkins, O. Manuel Uy, G.M. Murray. Polymer-Based Lanthanide Luminescent Sensor for Detection of the Hydrolysis Product of the Nerve Agent Soman in Water // Anal. Chem. 1999. V. 71. P. 373-378.

59. Patent US 20120164027 A1. Polymer Based Lanthanide Luminescent Sensors for the Detection of Organophosphorus Compounds / G.M. Murray, O.M. Uy, A.L. Jenkins. 2012.

60. S.L. Bartelt-Hunt, D.R.U. Knappe, M.A. Barlaz. A Review of Chemical Warfare Agent Simulants for the Study of Environmental Behavior // Critical Reviews in Environmental Science and Technology. 2008. V. 38(2). P. 112-136.

61. МУК 4.1.011-2010. Методические указания по методам контроля. Методика выполнения измерений массовой концентрации зомана в пробах водных объектов хозяйственно-питьевого и культурно-бытового водопользования методом газовой хроматографии (утв. заместителем руководителя ФМБА России 18.05.2010).

62. МУК 4.1.66-2004. Методика измерений массовой концентрации Vx в воде водных объектов хозяйственно-питьевого и культурно-бытового водо-пользования биохимическим методом. ФГУП «УНИИМ» - ГНМЦ. 2004. Свидетельство №224.01.17.209/2004.

63. S.V. Sadovnikov, A.V. Sosnov, E.A. Fokin et. al. Investigation of Antiatherosclerotic Properties of Selective BuChE Inhibitors // XIVth International Conference on Phosphorus Chemistry (ICPC-14, Cincinnati, USA). 1998. P. 226.

64. Патент РФ 2041878. N,N-диалкил-амидофтор-о-(транс-2-замещенные циклоалкил)фосфаты / С.В. Садовников, А.В. Соснов, Е.А. Фокин и др. - Заявл. 30.07.93; опубл. 20.08.95. URL: http://www.freepatent.ru/patents/2041878.

65. Патент РФ 2102398. N-(2-диизо-пропилоксифосфорилтиоэтил)-n-(замещенные бензил)-n,n-диалкиламмоний, пиперидиний или морфолиний галогениды / М.А. Кочетков, С.В. Садовников, А.В. Соснов, Е.А. Фокин и др. - Заявл. 11.11.96; опубл. 20.01.98. URL: http://www.freepatent.ru/patents/2102398 (дата обращения 04.09.2017).

66. K.A. Anikienko, S.V. Sadovnikov, A.V. Sosnov, E.A. Fokin et. al. Selective butyrylcholinesterase inhibitors among dialkylphosphoramidofluoridates // Phosphorus, Sulfur and Silicon and the Related Elements. 2006. V. 130(1). Р. 115-129.

67. K.A. Anikienko, S.V. Sadovnikov, A.V. Sosnov et. al. Selective Butyrylcholinesterase Inhibitors as Model Substances // The 7th International Symposium on Protection against Chemical and Biological Warfare Agents. - Stockholm, Sweden. 2001.

68. Chemical Warfare Agents: Toxicology and Treatment / Ed. By Timothy T. Marrs. - NY: John Wiley & Sons, 2007. 750 p.

69. I.N. Stan’kov, I.D. Derevyagina, V.B. Kondrat’ev, V.B. Sitnikov, S.V. Sadovnikov, S.N. Mylova. Gas-Chromatographic Determination of Trace S-[2-(N,N-Diethylamino)ethyl]Methylphos-phonothioic Acid in Water // Journal of Analytical Chemistry. 2008. V. 63(7). P. 668-673.

70. S.V. Sadovnikov, I.N. Stan’kov, I.D. Derevyagina, A.V. Sosnov. Development of samples preparation scheme for detection of S-[2-(N,N-diethylamino)ethyl] methylthiophosphonate trace amounts in a water environment // 33rd AMOP Technical Seminar on Environmental Contamination and Response. Canada. 2010.

71. M. Pohankaa, J. Zdarova Karasovab, K. Kucaa, J. Pikulac, O. Holasb, J. Korabecnyb, J. Cabal. Colorimetric dipstick for assay of organophosphate pesticides and nerve agents represented by paraoxon, sarin and VX // Talanta. 2010. V. 81. P. 621-624.

72. Chemical and Biological Terrorism: Research and Development to Improve Civilian Medical Response / Committee on R&D Needs for Improving Civilian Medical Response to Chemical and Biological Terrorism Incidents. - Washington (DC): National Academies Press, 1999. 304 p.

73. B. Díaz de Gren et. al. Fluorescent Discrimination between Traces of Chemical Warfare Agents and Their Mimics // J. Am. Chem. Soc. 2014. V. 136. P. 4125-4128.

74. Y. Liu, M. Bonizzoni. A Supramolecular Sensing Array for Qualitative and Quantitative Analysis of Organophosphates in Water // J. Am. Chem. Soc. 2014. V. 136. P. 14223-14229.

75. E. Climent, M. Biyikal, K. Gawlitza, T. Dropa, M. Urban, A.M. Costero, R. Martnez, K. Rurack. A Rapid and Sensitive Strip-Based Quick Test for Nerve Agents Tabun, Sarin, and Soman Using BODIPY-Modified Silica Materials // Chem. Eur. J. 2016. V. 22. P. 1-6.

76. E.T. Gainullina, K.V. Kondratyev, S.B. Ryzhikov, V.F. Taranchenko. Fluorescent Method for Evaluation of Cholinesterase Inhibitors // Bulletin of Experimental Biology and Medicine. 2006. V. 142(6). P. 751-752.

77. S. Royo, R. Martınez-Manez et. al. Chromogenic and fluorogenic reagents for chemical warfare nerve agents’ detection // Chem. Commun. 2007. V. 46 P. 4839-4847.

78. G.E. Southard, K.A. Van Houten et. al. Luminescent sensing of organophosphates using europium(III) containing imprinted polymers prepared by RAFT polymerization // Anal Chim Acta. 2007. V. 9 (581/2). P. 202-207.

79. R. Shunmugam, G.N. Tew. Terpyridine-Lanthanide Complexes Respond to Fluorophosphate Containing Nerve Gas G-Agent Surrogates // Chem. Eur. J. 2008. V. 14. P. 5409-5412.

80. R. Sferopoulos. A Review of Chemical Warfare Agent (CWA) Detector Technologies and Commercial-Off-The-Shelf Items. Human Protection and Performance Division DSTO. Defence Science and Technology Organisation. 2009.

81. A.A. Fatah, R.D. Arcilesi, J.C. Peterson, C.H. Lattin, C.Y. Wells, J.A. McClintock. Guide for the Selection of Chemical Detection Equipment for Emergency First Responders. 3rd еdition. Office of Law Enforcement Standards. National Institute of Standards and Technology. 2007.

82. B.M. Gandhi. Chemical Detectors in Defence. A Guide Book. - NeoBioMed Services. 2017.

83. МУК 4.1.012-2010. Методические указания по методам контроля. Методика выполнения измерений массовой концентрации зарина в пробах водных объектов хозяйственно-питьевого и культурно-бытового водопользования методом газовой хроматографии (утв. заместителем руководителя ФМБА России 18.05.2010).

84. I.A. Rodina, A.V. Brauna, I.A. Anan’eva, O.A. Shpiguna, E.I. Savel’eva, I.V. Rybal’chenko, S.L. Bolotov, G.M. Rodchenkov. Detection of nerve agent markers by liquid chromatography-mass spectrometry // Journal of Analytical Chemistry. 2011. V. 66. № 14. P. 1417-1422.

85. J.S. Tsang, A.A. Neverov, R.S. Brown. Billion-fold Acceleration of the Methanolysis of Paraoxon Promoted by La(OTf )3 in Methanol // J. Am. Chem. Soc. 2003. V. 125(25). P. 7602-7607.

86. T. Andrea, A.A. Neverov, R.S. Brown. Efficient Methanolytic Cleavage of Phosphate, Phosphonate, and Phosphonothioate Esters Promoted by Solid Supported Lanthanide Ions // Ind. Eng. Chem. Res. 2010. V. 49(15). P 7027-7033.

87. B.B. Dhar, D.R. Edwards, R.S. Brown. A Study of the Kinetics of La3+-Promoted Methanolysis of S-Aryl Methylphosphonothioates: Possible Methodology for Decontamination of EA 2192, the Toxic Byproduct of VX Hydrolysis // Inorg. Chem. 2011. V. 50. P. 3071-3077.

88. Л.К. Густылева, Н.С. Хлебникова, Е.И. Савельева, А.С. Радилов. Анализ химического состава продуктов разложения российского вещества vx в условиях каталитического метанализа // Аналитика и контроль. 2013. Т. 17(2). С. 190-195.

89. V. Blinov, K. Volchek, W. Kuang, C.E. Brown, A. Bhalerao. Two-Stage Decontamination of Organophosphorus Compounds on Sensitive Equipment Materials // Ind. Eng. Chem. Res. 2013. V. 52. P. 1405-1413.

90. V. Blinov, K. Volchek, W. Kuang, A. Bhalerao, C.E. Brown. Decontamination of Paraoxon and Parathion on Sensitive Equipment Materials by Catalytic Methanolysis // Ind. Eng. Chem. Res. 2014. V. 53. P. 13856-13861.

91. Patent US 8722956 B2. Kit for decomposing organophosphorus compounds / R.S. Brown, A.A. Neverov, J.S.W. Tsang. - 2014.

92. D.R. Edwards, R.S. Brown. Development of metal-ion containing catalysts for the decomposition of phosphorothioate esters // Biochimica et Biophysica Acta. 2013. V. 1834. P. 433-442.

93. ИПП-11. URL: https://ru.wikipedia.org/wiki/%D0%98%D0%9F%D0%9F-11 (дата обращения 04.09.2017).

94. Патент РФ № 2050849. Средство для лечения гнойных ран / В.Р. Рембовский, А.Б. Слободской, В.И. Сериков и др. 1995. URL: http://ru-patent.info/20/50-54/2050849.html (дата обращения 04.09.2017).

95. Patent WO 2007027118 A1. Dermatological composition / V.S. Polyakov, A.P. Gorshkov, N.A. Vorotyagina. - 2005.

96. G.H. Dennison, C.G. Bochet, C. Curty et. аl. The foundations for selective, sensitive and rapid next generation detection of v-series chemical warfare agents with trivalent lanthanide based systems // 12th International Symposium on Protection against Chemical and Biological Warfare Agents. Stockholm, Sweden. 2016.

97. A.W. Fountain III. Trends and future challenges for the cbrne detection. Plenary lecture Detection and On-Site Analysis // 12th International Symposium on Protection against Chemical and Biological Warfare Agents. Stockholm, Sweden. 2016.

98. Report of the scientific advisory board’s workshop on emerging technologies. OPCW Twenty-Sixth Session. OPCW. 2017.


Review

For citations:


Sosnov A.V., Vlasov M.I., Sadovnikov S.V., Rufanov K.A., Semchenko F.M., Sosnova A.A., Radilov A.S., Savelieva E.I. DETECTION OF TOXICANTS BASED ON LUMINESCENT REAGENTS. Drug development & registration. 2017;(4):108-124. (In Russ.)

Views: 1406


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)