Preview

Drug development & registration

Advanced search

THE INFLUENCE OF LOW-TEMPERATURE PLASMA TREATMENT ON MICROBIAL CONTAMINATION LEVEL OF MEDICINAL PLANT RAW MATERIAL

Abstract

Efficacy of non-equilibrium low-temperature plasma treatment for reducing microbial contamination of medicinal plant raw materials (chamomile flowers and peppermint leaves) was studied. Decontamination of plant raw materials was carried out at experimentally defined conditions: exposure time - 5.0 min, glow discharge frequency - 1.76 MHz, working pressure - 0.1 Pa, working gas of plasma - argon. It was found that spore-forming bacteria count after treatment under these conditions decreases by 2 orders of magnitude, yeast and mould count decreases by 3 orders of magnitude.

About the Authors

O. M. Tikhomirova
St. Petersburg State Chemical Pharmaceutical Academy of the Ministry of Healthcare
Russian Federation


E. Y. Zagorulko
St. Petersburg State Chemical Pharmaceutical Academy of the Ministry of Healthcare
Russian Federation


A. A. Eruzin
Saint-Petersburg State Institute of Technology
Russian Federation


M. G. Ozhigova
St. Petersburg State Chemical Pharmaceutical Academy of the Ministry of Healthcare
Russian Federation


M. M. Sychev
Saint-Petersburg State Institute of Technology
Russian Federation


References

1. A. Fridman, G. Friedman. Plasma medicine. - London: John Wiley & Sons, 2013. 545 p.

2. Л.С. Полак. Теоретическая и прикладная плазмохимия. - М.: Наука, 1975. 154 с.

3. Ю.А. Лебедев. Введение в плазмохимию. - Новосибирск: Наука, 1994. 89 с.

4. O.J. Cahill, T. Claro, N. O’Connor et al. Cold air plasma to decontaminate inanimate surfaces of the hospital environment // Appl. Environ. Microbiol. 2014. V. 80. № 6. P. 2004-2010.

5. K. Oehmigen, J. Winter, M. Hähnel et al. Estimation of possible mechanisms of Escherichia coli inactivation by plasma treated sodium chloride solution // Plasma Process. Polym. 2011. V. 8. № 10. P. 904-913.

6. H. van Bokhorst-van de Veen, H. Xie, E. Esveld et al. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores // Food Microbiol. 2015. V. 45. P. 26-33.

7. M.Y. Alkawareek, S.P. Gorman, W.G. Grahamb. Eradication of marine biofilms by atmospheric pressure non-thermal plasma: A potential approach to control biofouling? // Int. Biodeterior. Biodegr. 2014. V. 86A. P. 14-18.

8. G. Brelles-Mariсo. Challenges in biofilm inactivation: the use of cold plasma as a new approach // Bioprocessing & Biotechniques. 2012. V. 2. № 4. P. 107-111.

9. M. Laroussi. Low-temperature plasmas for medicine? // Trans. Рlasma Sci. 2009. V. 37. № 6. P. 714-725.

10. M. Laroussi. Low temperature plasma-based sterilization: overview and state-of-the-art // Plasma Process. Polym. 2005. № 2. P. 391-400.

11. V. Boxhammer, G. E. Morfill, J. R. Jokipii. Bactericidal action of cold atmospheric plasma in solution // New J. Physics. 2012. V. 14. P. 113042-113060.

12. N. O’Connor, O. Cahill, S. Daniels. Cold atmospheric pressure plasma and decontamination. Can it contribute to preventing hospital-acquired infections? // J. Hosp. Inf. 2014. V. 88. № 2. P. 59-65.

13. M. Naïtali, G. Kamgang-Youbi, J.-M. Herry. Combined effects of long-living chemical species during microbial inactivation using atmospheric plasma-treated water // Appl. Environ. Microbiol. 2015. V. 76. № 22. P. 7662-7664.

14. Anwendung von Plasmaverfahren zur schonenden Haltbarmachung am Beispiel verderblicher Lebensmittelprodukte in der Nachernte (FriPlas). URL: https://www.atb-potsdam.de/forschungsprogramme/projekt.html?xq=229 (дата обращения 03.06.2017).

15. L.F. Pivarnik, R. Worobo. Non-thermal or alternative food processing methods to enhance microbial safety and quality // NIFA-USDA Bulletin. 2014. 8 p. URL: http://ucfoodsafety.ucdavis.edu/files/227891.pdf (дата обращения 24.06.2017).

16. B.A. Niemira. Cold plasma decontamination of foods // Annu. Rev. Food Sci. Technol. 2012. V. 3. P.125-142.

17. Патент РФ № 2428203 С1, МПК А61К 41/00. Способ деконтаминации лекарственного растительного сырья / М.В. Богма, A.A. Ерузин, Т.С. Потехина, Л.М. Манойлова, И.Б. Гавриленко; патентообладатель Санкт-Петербургский гос. технологический ин-т. - № 2010119315/15; заявл. 13.05.10; опубл. 10.09.11.

18. Патент РФ № 2484838 С1, МПК A61K 36/00. Способ подготовки измельченного лекарственного растительного сырья (ЛРС) для таблетирования методом прямого прессования / М.М. Сычев, А.А. Ерузин, И.Б. Гавриленко, М.В. Богма, Л.М. Манойлова; патентообладатель Санкт-Петербургский гос. технологический ин-т. - № 2011132534/15; заявл. 02.08.11; опубл. 20.06.13.

19. Государственная фармакопея Российской Федерации, XIII издание. Т. 1. - М. 2015. 1470 с. URL: http://193.232.7.120/feml/clinical_ref/pharmacopoeia_1_html/HTML/ (дата обращения 01.03.2017).

20. I. Mannazzu, S. Landolfo, T. Lopes da Silva et al. Red yeasts and carotenoid production: outlining a future for non-conventional yeasts of biotechnological interest // World J. Microbiol. Biotechnol. 2015. V. 31. № 11. P. 1665-1673.

21. Н.Н. Гесслер, А.С. Егорова, Т.А. Белозерская. Меланиновые пигменты грибов в экстремальных условиях существования // Прикладная биохимия и микробиология. 2014. Т. 50. № 2. С. 125-134.


Review

For citations:


Tikhomirova O.M., Zagorulko E.Y., Eruzin A.A., Ozhigova M.G., Sychev M.M. THE INFLUENCE OF LOW-TEMPERATURE PLASMA TREATMENT ON MICROBIAL CONTAMINATION LEVEL OF MEDICINAL PLANT RAW MATERIAL. Drug development & registration. 2017;(4):198-201. (In Russ.)

Views: 636


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)